ASCII művészet Java-ban

ASCII Art 4

ASCII Art 1Átte­kint­jük a ka­rak­ter­a­la­pú raj­zo­lás le­he­tő­sé­ge­it Java 2D gra­fi­ká­val, illetve a ka­rak­ter­fü­zé­rek kép­ként va­ló ke­ze­lé­sé­nek újabb le­he­tő­sé­ge­it is.

Az ASCII művészet jelentése és kezdete

Az ábécék betűiből/szövegeiből kialakított ábrák egyidősek lehetnek az írásbeliséggel. A technológiától függetlenül a karakterekből kialakított kép megjeleníthető: papír és penna vagy írógép, illetve számítógép és nyomtató vagy monitor segítségével.
Az ASCII művészet (ASCII art) tágabb értelemben a szövegalapú vizuális művészetre vonatkozik. Szűkebb értelemben véve a számítógépes grafika részterületének tekinthető. Az ASCII művészet számítógépet használ nyomtatható standard ASCII kompatibilis karakterekből álló képek készítéséhez és megjelenítéséhez. A képeken a képi elemek a nyomtatható karakterek, amelyek a pointilizmushoz hasonló optikai effektust mutatnak.
A művészeti ág indulása arra vezethető vissza, hogy a korai nyomtatókkal nem lehetett grafikát nyomtatni, a monitorokon nem lehetett grafikát megjeleníteni. Cégek, programok bannerjeinek, logóinak készítésére pedig akkor is volt igény. Ezek mellett például prezentációkhoz, kapcsolási rajzokhoz is használták az ASCII művészetet, valamint természetesen a korai e-mailekben is. A grafikus kártyák megjelenése előtti időkben pedig a videójátékok „grafikája” is ezzel a technikával készült.
Most nézzünk meg néhány lehetőséget saját programmal való képkészítésre.

ASCII képek rajzolása programozási alapismeretek tanulásakor

Saját programmal már az alapok tanulásakor készíthetők ASCII képek a vezérlő szerkezetek megismerése kapcsán. Az alábbi képek bemutatják a lehetőségeket.

ASCII Art 2

További sok-sok kép található az alábbi weboldalakon:

A 2D grafikával való szövegrajzoláshoz használható BufferedImage osztály

A BufferedImage osztály a java.awt.image csomag része. Az Image osztály utódja. Hozzáférhető képadat-puffert tartalmaz, colorModel-ből és képadatok raster-éből áll. A raster sampleModel-jében a sávok számának és típusainak illeszkedniük kell a színt és átlátszó (alpha) komponenseket megadó colorModel által megkívánt számhoz és típusokhoz. A BufferedImage típusú objektumnak van bal felső koordinátája (0, 0), ezért a létrehozásához használt raster-nek kell legyen minX=0 és minY=0 értéke. A BufferedImage osztály a raster fetch és set metódusaira, valamint a colorModel színmódosítási módszereire támaszkodik.

Szöveg képként megjelenítése karakterekkel a konzolon

A kép méretét beállítjuk. A Graphics2D osztály drawString() metódusával String-et képként jeleníthetünk meg. Bár elég „munkás”, de Java-ban gyakran BufferedImage példány létrehozásával oldjuk ezt meg, és a Graphics példányt attól kérjük el. A Graphics2D osztály karakterfüzérek rajzolásakor egyszerű mátrixszerű technikát használ. A String-et kirajzoló mátrixrészek nullától különböző értéket kapnak. A megjelenítendő terület értékét egyszerű adatként, például int-ként kell megadnunk, nem RGB színértékekkel. Ehhez a képtípust int-módba állítottuk: BufferedImage.TYPE_INT_RGB. Az ASCII képek alapötlete az, hogy a képmátrix nem nulla indexeihez hozzárendelt értékeket a kívánt művészi karakterrel helyettesítjük. A nulla értékű mátrixindexeknek szóközt adunk. A nulla integer-módban -16777216-tal egyenlő. Ezután a Java 2D grafika haladó renderelő beállításainak használatához kasztoljuk a Graphics objektumot Graphics2D példánnyá. Majd beállítjuk a kívánt renderelési paramétereket, végül meghívjuk a drawString() metódust egy karakterlánccal.

Íme az elkészült szöveg/képernyőkép:

ASCII Art 3

A karakterek cserélgetésével a pozitív képből könnyen kaphatunk inverz/negatív képet is. A generált/renderelt képet fájlban is tárolhatjuk, például a javax.imageio.ImageIO osztállyal és adott a lehetőség a kép méretének megadására, a rajta megjelenő szöveg betűtípusának beállítására, háttérszín és szövegszín alkalmazására is.

A Java BufferedImage osztály néhány lehetőségének áttekintése után jó szórakozást kívánunk az ASCII képek létrehozásához, a lehetőségek további tanulmányozásához. Aki nem programból szeretne karakterekből/szövegekből felépülő képeket készíteni, használhat online alkalmazásokat is, például az Image to HTML/ASCII-t.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás, 2. rész alkalmához kötődik.

Koch-görbe rajzolása

Koch-görbe

Koch-görbeA Koch-görbe egyike a legrégebben ismert egyszerű fraktáloknak. Mint ilyen, önhasonlóan rekurzív. Az önhasonlóság azt jelenti, hogy az ábra tetszőleges részét felnagyítva mindig hasonló/ugyanolyan részek jelennek meg (a méretaránytól függetlenül). Az n=1 szinten a Koch-görbe kiindulópontja egy szabályos háromszög. A n+1-edik szinten az n-edik szinten található szakaszokat harmadoljuk, és a középső szakasz helyére egy harmad akkora háromszög két szárát illesztjük (az alapját kihagyjuk). Ezt rekurzívan folytatva kapjuk meg a Koch-görbét, másképpen Koch-féle hópelyhet.

Írtam egy egyszerű Java programot, amely n=1-től 9-ig paraméterezhetően kirajzolja a Koch-görbét egy grafikus felületre. Így működik:

Koch-görbe rajzolását bemutató program működése

A program elkészítéséhez néhány alapvető dolgot kell csupán tudni:

  • Vászontechnikával tudunk swing GUI felületre ( Graphics osztályú g objektum) rajzolni, ahol a koordináta-rendszer origója egy téglalap alakú terület bal felső csúcsa, X jobbra növekszik, Y pedig lefelé növekszik.
  • Kétféle szín áll rendelkezésre: háttérszín (most Color.WHITE), illetve rajzolószín (most Color.BLUE).
  • A rajzoláshoz grafikai primitíveket használhatunk, például pont, szakasz, téglalap, ellipszis. Szakaszt két végpontjának koordinátáival tudunk rajzolni a drawLine() metódussal.
  • Be kell állítani a vászon méreteit, azaz annak a komponensnek ( JPanel-ből öröklött KochPanel osztályú pnKoch objektum) a méreteit, amelyre ráfeszül a vászon.
  • Egy Slider osztályú sSzint nevű vezérlőobjektum ChangeListener figyelőinterfész stateChanged() eseménykezelő metódust implementáló objektumával paraméterezzük a rajzolást 1-től 9-ig.
  • A pnKoch objektumnak küldött repaint() üzenet/metódushívás meghívja a felüldefiniált paintComponent() metódust.

A szakasz négy darab harmad akkora szakaszra osztását a megfelelően paraméterezett rekurzív metódushívások oldják meg az alábbi lépéseket követve:

Koch-görbe rajzolásának fázisai

A rekurzív rajzolást a koch() metódus végzi el, ahol a fraktál szabályának megfelelően szakaszharmadolás és a szükséges pontok koordinátáinak (szakaszok végpontjai) kiszámítása történik:

A Koch-görbének van néhány érdekes tulajdonsága:

  • kerülete minden rekurzív lépésben minden határon túl növekszik, azaz a végtelenhez tart,
  • területe véges, hiszen minden rekurzív lépésben belefér a háromszög köré írható körbe,
  • dimenziója tört, ~ 1,261859.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomra építő 29-36. Grafikus felhasználói felület alkalomhoz kötődik.

Hány éves a kapitány?

Hány éves a kapitány?

Hány éves a kapitány?A problémamegoldó, logikus gondolkodásra nevelő képzések anyagában, illetve felvételi feladatsorokban is sokszor megtalálható – többféle változatban is.

Lássunk egyet a népszerű „Hány éves a kapitány?” típusú feladatok közül!

Három elefántot kell berakodnunk – szólt a hajóskapitány az első tiszthez.
És hány évesek ezek az elefántok? – kérdezte az első tiszt.
Mindegyik elmúlt már két éves és életkoraik szorzata 2450 – volt a válasz.
Hát életkoraik összege?
Azt fölösleges elárulnom, mert abból még nem tudnád megállapítani életkorukat – mondta a kapitány, majd hozzátette: Az egyikük idősebb nálam.
Akkor már tudom, hogy hány évesek az elefántok – mondta az első tiszt.

Feltéve, hogy tényleg tudta; … hány éves a kapitány?

Hogyan használhatnánk a feladat megoldásához programozáshoz kötődő ismereteinket?

Állítsunk elő olyan három szorzótényezőt, amelyek szorzata 2450 és egyben írassuk ki az összegüket is a konzolra!

Az i, j, k a három elefánt életkorát jelöli. Mivel mindegyik elmúlt két éves (és feltételezzük, hogy életkoraik egész számmal kifejezhetők), így i=3-ról indul. Az elefántok lehetnek egyidősek, ezért j=i-ről és k=j-ről indul. Nincs kizárt életkor, így a változók léptethetők egyesével. Az i, j, k monoton növekvő sorozatot alkot, ezért a kiírásban nem lesznek olyan sorok, amelyek csupán a szorzótényezők sorrendjében térnek el. Durva felső becslés a 100, hiszen az elefántok általában 60-70 évig élnek. Eredményül ezt kapjuk:

Az eredményből milyen következtetés(eke)t lehet levonni és mi a megoldás?

Az egyszer előforduló összegeket ki kell zárni, mert abból az első tiszt tudná az elefántok életkorát. Többször előforduló összegként marad a 64. Tehát az elefántok lehetnek 5, 10, 49, illetve 7, 7, 50 évesek. Mivel a kapitánynál idősebb az egyik elefánt, így a kapitány nem lehet 48 éves vagy fiatalabb (mert ekkor nem lenne egyértelmű az életkora), illetve nem lehet 50 éves vagy idősebb (mert ekkor nem lenne nála idősebb elefánt). Tehát a kapitány 49 éves.

(Másképpen megközelítve: a 2450 prímtényezős felbontása 2*52*72, amiből ugyanezekre a következtetésekre juthatunk.)

A feladat további változatai

  • Egy hajó hosszának, az árbóc magasságának, a kapitány kisfia életkorának és a kapitány életkorának szorzata 303335. Hány éves a kapitány?
  • A kapitány most kétszer annyi idős, mint a hajója volt akkor, amikor a kapitány kétszer volt annyi idős, mint most a hajója. A kapitány és a hajója összesen 70 éves. Hány éves a kapitány?
  • A Fekete Kalóz néven elhíresült kalózkapitány egyik sikeres kalandja után kiszámíttatta saját maga és kisfia életkorának, valamint hajója hosszának a szorzatát. Az eredmény 26 159 lett, amelyet mint szerencseszámot egy medálra vésetett és mindig a nyakában hordott. Hány éves a kapitány? (A hajóhosszt méterekben mérték, és a mérőszám egész szám!)
  • Te vezeted az utasszállító repülőt. Budapesten felszáll 11 utas. Bécsben leszáll 5 és felszáll 9. Párizsban 1 kivételével mindenki leszáll. Hány éves a kapitány?
  • A kapitány hajója most 40 éves. Kétszer annyi idős, mint amennyi a kapitány volt akkor, amikor a hajó annyi idős volt, mint a kapitány most. Hány éves a kapitány?

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek alkalmához kötődik.

Ajánlott irodalom

Aki kedvet kapott és beszerezne néhány könyvet – tele érdekes, gondolkodtató, kreatív, logikai feladatokkal – ajánlom az alábbiakat:

  • Katona, R. (szerk): Logikai egypercesek – az elme játékai, 2. kiadás, DFT-Hungária Könyvkiadó, Budapest, 2006, ISBN 963 9473 55 3
  • Róka, S.: 2×2 néha 5? – Paradoxonok, hibás bizonyítások, Tóth Könyvkereskedés és Kiadó Kft., Debrecen, 2008, ISBN 963 5965 24 3
  • Károlyi, Zs.: Csak logIQsan!, 2. javított kiadás, Typotex Elektronikus Kiadó Kft., Budapest, 2017, ISBN 963 279 693 5
  • Róka, S.: Egypercesek – Feladatok matematikából 14-18 éveseknek, Tóth Könyvkereskedés Kft., Debrecen, 1997
  • G. Nagy, L.: A világ legújabb logikai rejtvényei, Magyar Könyvklub, H. n., 2001, ISBN 963 547 512 8

Haladóknak ajánlom

  • Smullyan, R.: A hölgy vagy a tigris? – és egyéb logikai feladatok, 2. javított kiadás, Typotex Kiadó Kft., Budapest, 2002, ISBN 963 7546 63 4
  • Smullyan, R.: Mi a címe ennek a könyvnek? – Drakula rejtélye és más logikai feladványok, Typotex Elektronikus Kiadó Kft., Budapest, 1996, ISBN 963 7546 64 2
  • Shasha, D.: Dr. Ecco talányos kalandjai, Typotex Kiadó – SHL Hungary Kft., 2000, ISBN 963 9132 72 1

Optikai csalódások

OptikaiCsalodas0

OptikaiCsalodas0A grafikus felülettel rendelkező Java programok (Swing, FX, webkomponensek, HTML+CSS) fejlesztése során igény adódhat arra, hogy a GUI komponensek saját beépített rajzoló/renderelő képességét felülírjuk/-definiáljuk, hogy egy-egy nyomógomb, menüpont, rádiógomb másképpen nézzen ki. Léteznek beépített rajzoló funkciók is.

Ha például grafikont kell beilleszteni egy alkalmazásba, akkor használjunk és igényeink szerint szabjunk testre egy JFreeChart csomagbeli grafikont, illetve előfordulhat, hogy találhatunk egy olyat a JFreeChart Demo-ban, ami éppen megfelel a megrendelő igényeinek.

Persze a műfaj nem ér itt véget. Időnként kreatívabb ábrák, rajzok, grafikák megjelenítésére is használhatjuk a beépített – általában téglalap alakú – komponenseket. Ehhez egyszerűen csak felül kell írni/definiálni a paint() metódusukat és vászontechnikával, a megszokott képernyős koordináta-rendszerben, grafikai primitíveket (pont, téglalap, ellipszis) és színeket kell megfelelően paraméterezni.

Az optikai csalódások igen népszerűek, és az egyszerűbb fiziológiai és kognitív illúziók könnyen lerajzolhatók a fenti eszköztárral, hiszen csupán színek, alakzatok, kontraszt, távolság, mélység, térhatás segítségével valósulnak meg.

Íme három egyszerű példa, hogyan állítható elő optikai csalódás Java implementációval!

1. példa

Optikai csalódás 1

2. példa

Optikai csalódás 2

3. példa

Optikai csalódás 3

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Aki ezek után kedvet kapott, keressen hasonló ábrákat és tervezve, kódolva, tesztelve gyakoroljon! Ajánlom ezeket a weboldalakat:

Hasonló feladatok megoldásához a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 29-36. Grafikus felhasználói felület alkalma után bátran hozzá lehet fogni, illetve érintjük még a GUI témakört a Java adatbázis-kezelő tanfolyam 33-40. óra: Grafikus kliensalkalmazás fejlesztése JDBC alapon alkalommal is.

Fibonacci nap

Fibonacci logó

Fibonacci logóA Fun Holidays – Fun, Wacky & Trivial Holidays weboldal sokféle különleges ünnepnapot listáz. Ezek leírása többnyire vicces, emlékezős, de néhány igazán érdekes, régi-régi hagyományt elevenít fel.

Ma van (november 23.) a Fibonacci nap. Fibonacci középkori matematikus volt, ő tette közismertté a Fibonacci-sorozat-ot. A (0), 1, 1, 2, 3, 5, 8, 13, 21, 34, sorozat igen népszerű azok közében is, akik programozást tanulnak. A sorozat első két eleme 1 és 1 (ha szükséges, akkor nulladik elemmel is dolgozhatunk), és minden további elem az előző két elem összege. Többféle történet is fűződik ehhez, talán az egyik legismertebb a nyúlpárok szaporodásához kötődik.

Honnan származik a Fibonacci nap? A mai nap hh.nn. formátumban 11.23. , és a számjegyek részei a Fibonacci-sorozatnak. Mindössze ennyi, ilyen egyszerű. 😉

A sorozat elemei könnyen előállíthatók néhány változó használatával, ha a kezdő programozó már ismeri a ciklust, mint algoritmikus építőelem – ez az iteratív megoldás. A rekurzív megoldás tipikus rossz megoldásként ismert, lássuk ennek Java megvalósítását:

Ha kiadnám a fenti Java forráskódot papíron ezt egy dolgozatban, zárthelyin, állásinterjú szakmai részén azzal a kérdéssel, hogy mit ír ki a program a képernyőre, akkor bizony sokan bajban lennének. Meg is történt ez már sokszor, tapasztalatból írom. A rekurzió első leszálló ágáig szinte mindenki eljut, de az ott induló első felszálló ágat követően sokan belezavarodnak a részlépések egymásutániságába. A végeredményt szinte mindenki tudja, de itt most arra helyezzük a hangsúlyt, hogy hogyan jutunk el odáig. Persze n=5-re fib(5)=5. Alig fordult még elő, hogy valaki hibátlanul leírta volna az alábbi eredményt:

A megoldás során – emlékeztetek arra, hogy ez atipikus megközelítés – sok-sok redundáns lépés történik. Hiszen például a fib(3)-at tudni kell a fib(4)-hez és a fib(5)-höz is, hiszen fib(4)=fib(2)+fib(3) és fib(5)=fib(3)+fib(4), valamint ebben az implementációban nincs semmilyen emlékezet (puffer, adatszerkezet), amivel a sok feleslegesnek vélhető számítást elkerülhetnénk.

Nyert ügye lehet annak, aki „fejben összerakja” az alábbi fát – akár dinamikusan, menet közben hozzáadva és törölve elemeket – és ebben navigálva (ezt bejárva) válaszolja meg a kérdést:

Fibonacci-sorozat-n=5

Az alábbi animáció segíthet a megértésben: 45 lépésben mutatja be az aktuális részlépést/részfeladatot (leszálló ág) és/vagy az aktuális részeredményt (felszálló ág):

Fibonacci-sorozat-n=5

A Fibonacci-sorozat többféleképpen kapcsolódik a természethez, természeti jelenséghez, növényekhez, állatokhoz (virágszirmok száma, levelek elfordulása, napraforgók magjai, fenyőtoboz pikkelyei, nautilus háza, aranymetszés, zenei hangolás, zeneművek tagolása), felhasználható algoritmusok futási idejének becsléséhez, fa adatszerkezetek építéséhez is. Az aranymetszésről megoszlanak a vélemények: vannak akik szinte mindenben ezt látják (művészet: festészet, szobrászat), mások módszeresen cáfolják ezt (például Falus Róbert: Az aranymetszés legendája, Magyar Könyvklub, 2001, második, javított kiadás, ISBN 963-547-332-X).

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalmához kötődik.