Egy matematika érettségi feladat megoldása programozással 2022

érettségi logó

érettségi logóA 2022-es középszintű matematika érettségi feladatsor eléggé egyszerű volt, de azért a 6. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá a megszámolás programozási tétel. Többféle megoldás/megközelítés (iteratív és rekurzív) is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

6. feladat

Egy feleletválasztós teszt 5 kérdésből áll, minden kérdésnél négy válaszlehetőség van. Hányféleképpen lehet az 5 kérdésből álló tesztet kitölteni, ha minden kérdésnél egy választ kell megjelölni?

1. megoldás

Rögtön tudjuk, hogy ez kombinatorika, n elem k-ad osztályú ismétléses variációja, amelynek paraméterei: n=4, k=5. A hatványozás azonosságainak ismeretében fejből is tudjuk a megoldást: 45=210=1024. A Java forráskód elvégzi a hatványozást. A Math.pow() függvény általánosabb, mint amire most szükségünk van. Fogad double valós paramétereket és double típusú értékkel tér vissza. Ezért hasznos az (int) explicit típuskényszerítés.

Másképpen: négy elemű halmazból öt elemet kiválasztunk és ezeket sorba rendezzük (permutáljuk) és egy elemet egy csoportban akár ötször is felhasználhatunk. Számít a sorrend. A lehetséges variációk száma: 1024.

2. megoldás

Ha hasznos lenne egy általános metódus az ismétléses variáció kiszámítására, akkor ez egy tipikus megoldás lehet erre. Kiegészítendő még a két paraméter előjelének ellenőrzésével.

3. megoldás

Ha a megértést segíti, akkor a teljes leszámolás (brute force) módszerével, egymásba ágyazott ciklusokkal könnyen kiírathatjuk a konzolra az 1024 db különböző válaszlehetőséget. A k-val kezdődő sorszámozott ciklusváltozók jelölik az öt kérdést, azon belül az 'a'-tól 'd'-ig karakterek adják a válaszlehetőségeket. Eredményül ezt kapjuk (görgethető):

4. megoldás

Ha csak a végeredmény szükséges, akkor ez az iteratív megoldás a megszámolás programozási tétellel előállítja azt.

5. megoldás

Ez egy rekurzív megoldás. Ciklus helyett a metódus önmagát hívja meg, így valósul meg az ismételt utasításvégrehajtás. A válaszlehetőségek összefűzésével (konkatenáció) előállított válasz akkor megfelelő, ha annak hossza öt. Ez esetben kiíródik a válaszlehetőség a konzolra (mintegy mellékhatásként). Ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

6. megoldás

Szintén, ha csak a végeredmény szükséges, akkor ez a mellékhatással rendelkező rekurzív metódus előállítja azt. A mellékhatás most az, hogy a metódus eljárás és nem függvény és szükséges hozzá a db osztályváltozó (ami a metódushoz képest globálisnak is tekinthető).

7. megoldás

Ez a megoldás a válaszlehetőségeket megfelelteti n alapú számrendszerben k számjegyből álló számoknak. A kétdimenziós tömbben számokat tárol, így:

  • 1,…,1,1 → 0…0000
  • 1,…,1,2 → 0…0001
  • 1,…,1,n → 0…001(n1)
  • 1,…,2,n → 0…001(n1)
  • n,…,n,n → (n1)...(n1)

Végül a kiíró ciklus ezeket a számokat karakterekké alakítja ( 'a' ASCII kódja 97) és fordított sorrendben írja ki, hogy ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

Továbbfejlesztési lehetőségek

  • A 2. megoldáshoz: teszteljük le a lehetséges túlcsordulást és az int típus helyett szükség esetén használjunk long típust!
  • A 3. megoldáshoz: építsünk kétdimenziós tömb adatszerkezetet, amiből később az i-edik válaszlehetőség megadható!
  • Előzőhöz: állítsuk elő lexikografikus sorrendben az i-edik válaszlehetőséget adatszerkezet felépítése nélkül!
  • A 6. megoldáshoz: valósítsuk meg a rekurzív gondolatmenetet mellékhatás nélkül!
  • Teszteljünk: mennyi idő alatt hajtódik végre a 4. és a 6. megoldás? Mekkora paraméterekkel érzékelhető, hogy a rekurzió jóval lassabban fut?
  • A 7. megoldáshoz: cseréljük le az egésztömb adatszerkezetet karaktertömbre!

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, valamint 21-24. óra: Objektumorientált programozás 1. rész alkalmaihoz kötődik.

Tankocka – Hozzárendeléses táblázat: Java kollekciók

Folytatjuk Tankockák blog bejegyzés sorozatunkat. A feladatban a Java kollekciók közül a halmaz adatszerkezeteket megvalósító osztályok tulajdonságait kell hozzárendelni a táblázatban. Ez a témakör mindhárom tanfolyamunkhoz kötődik: Java SE szoftverfejlesztő tanfolyam, Java EE szoftverfejlesztő tanfolyam, Java adatbázis-kezelő tanfolyam.

Érdemes ismerni a kollekció keretrendszer további osztályainak/interfészeinek tulajdonságait, viselkedésüket: tömb, lista, sor. Hasznos tudni, hogy melyiket mikor érdemes vagy éppen nem érdemes használni. Melyik a gyorsabb? Milyen karbantartó műveleteik vannak? Lehetnek-e bennük egyedi elemek? Mitől függ az elemek sorrendje? Van-e indexe? Biztosít-e iterátoron keresztül hozzáférést az elemekhez? Használható-e többszálú környezetben? Szálbiztos-e az adott kollekció?

Egy példányban futó Java program

Gyakran észrevesszük, hogy a programok futtatásakor vannak bizonyos korlátok. Például egyszerre általában csak egyetlen telepítőprogram futhat egy operációs rendszeren. Vagy amíg fut egy program korábbi verziójának eltávolítása, addig nem futhat a program új verziójának telepítője. Vagy egy nagyobb erőforrás igényű program (periféria meghajtó program, képernyő videó+hang rögzítő, hardveres gyorsítást használó játékprogram) egyszerre csak egy példányban indítható el. Előfordulhat kategóriánkénti korlát is, például a különböző víruskereső programok általában „nem tűrik meg” egymást, kizárólagosságot „követelnek”.

Lássunk példát arra, hogyan kell készíteni egy példányban futó Java programot!

Néhány dolgot át kell gondolni:

  • Amikor először indítjuk el a programot, akkor olyan egyedi dolgot kell beállítani, ami mindvégig úgy marad, amíg a program fut. Ezt megtehetjük a memóriában, de megfelelő jogosultsággal futtatva a programot akár beleírhatunk a Windows rendszerleíró adatbázisába (Registry) is. Előbbi módszer platformfüggetlen lenne – ahogyan egy Java programhoz illik –, és az utóbbi megoldás pedig operációs rendszertől függne.
  • Amikor többedszer (második, harmadik… példányban) indítjuk el a programot, akkor ezt az egyedi dolgot észlelni kell és meg kell akadályozni a program másodszori, harmadszori elindítását. Hasznos, ha ezekben az esetekben kapunk hibaüzenetet, például: „This application is already running”.
  • Amikor a programot szabályosan állítjuk le, akkor a korábban beállított egyedi dolgot semmissé kell tenni. Ez biztosítja, hogy a program egymás után – egymással nem párhuzamosan, egymástól függetlenül – elindítható lesz.

A megoldás két részből áll. Ez a Java forráskód első része:

A program indulásakor le kell futni a fenti forráskódnak. A static blokk a konstruktor előtt hajtódik végre (például a modell vagy a nézet rétegben). A java.net csomag kötetlen ServerSocket osztályú ss nevű objektumát kell inicializálni helyben ( InetAddress.getLocalHost()) egy nem dedikált porttal ( 65001). Ez elsőre mindig sikerült és az objektum „beül a memóriába” egy nem blokkoló elven működő háttérszálon. Ha (többedszerre) nem sikerül létrehozni az objektumot, akkor – kezelve a kötelezően kezelendő kivételeket – hasznos jelezni ezt logban, konzolon vagy felbukkanó párbeszédablakban és a programból ki kell lépni (másképpen: a duplikált futtatását meg kell akadályozni).

Ez a Java forráskód második része:

A programból való szabályos kilépéskor le kell futni a fenti forráskódnak. Ez ellenőrzést követően lezárja az ss objektumot és kilép a programból. Például a main() metódusban, ha elfogynak az utasítások egy konzolos alkalmazásban, vagy GUI-s programban nyomógombra kattintás actionPerformed() esemény, vagy (fő)ablak bezárásának kísérlete WindowClosing() esemény.

A programot érdemes körültekintően tesztelni. Ha elrontjuk a fenti felsorolásban vázolt logikai működés végrehajtásának sorrendjét, akkor fejlesztés vagy tesztelés közben akár a számítógépet is újra kell indítanunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java EE szoftverfejlesztő tanfolyamunkon, a szakmai modul 5-8. óra Szálkezelés, párhuzamosság alkalommal megismerjük a megoldás elméleti hátterét és a 17-24. óra Socket és RMI alapú kommunikáció alkalommal többféle megvalósítást is kódolunk, tesztelünk.

Tankocka – Párosítós játék: programozás Java nyelven

Ez a Tankockák blog bejegyzés sorozatunk első része. A feladatban meg kell találni a 15 db összetartozó párt a játékban. Ez a témakör mindhárom tanfolyamunkhoz kötődik: Java SE szoftverfejlesztő tanfolyam, Java EE szoftverfejlesztő tanfolyam, Java adatbázis-kezelő tanfolyam.

Át kell gondolni, hogy mi lehet a kapcsolat a párok elemei között. Közös jellemzőt/tulajdonságot kell találni. Észre kell venni az összefüggést. Persze nem árt, ha minél kevesebb lépésbe kerül a játék. 😉 Hajrá!

Skandináv lottó demóprogram

Skandináv lottó (heteslottó) demóprogramot tervezünk és írunk meg Java nyelven. Lépésenként mutatja meg, hogy mi történik a háttérben: hogyan állítja elő véletlenszerűen a lottószelvényt.

Az emlékezet egy logikai tömb. Ebben 36 elem van. A nulladik elem nem számít, és legyen a többi elem (1-35-ig indexelve) kezdetben mind hamis. A cél: legyen a tömbben pontosan 7 db igaz érték. Másképpen: a logikai tömb a lottószelvényen megjátszható számok kiválasztottságát jelöli, igen vagy nem. A heteslottó-szelvény 7 db 1 és 35 közötti különböző egész számból áll.

Mindig 1 és 35 közötti egész véletlenszámot tippelünk. Kezdetben jóSzámDb=0. Az első tipp biztosan jó és jóSzámDb=1. A többi tipp esetén vizsgálni kell, hogy már kiválasztott-e. Ha igen, akkor nincs teendőnk. Ha nem, akkor meg kell jegyezni (kiválasztottá kell tenni, azaz igazzá kell állítani a logikai tömbben) és a jóSzámDb++ (növelhető). Mindezt ciklusban ismételjük, amíg a jóSzámDb<7 feltétel teljesül (másképpen: amíg nincs elegendő kiválasztott szám a szelvényen). Mindez biztosítja az egyediséget, különbözőséget. Ha jóSzámDb==7, akkor kiírjuk a lottószelvényre kerülő számokat az alapján, hol (melyik indexen) van a logikai tömbben igaz érték.

Tekintsük át az alkalmazott módszer hátrányait és előnyeit. Hátrány, hogy 36 logikai érték szükséges ahhoz, hogy 7 különböző számot előállítsunk. Előny, hogy egyszerű az algoritmus (nem kell keresés és megszámolás programozási tétel) és nincs szükség rendezésre sem, mert a szakterületre jellemző „emelkedő számsorrend” a logikai tömb bejárásával önkéntelenül is adódik. Hangsúlyozzuk, hogy ez csupán egyetlen módszer a nagyon sok izgalmas közül, amikkel generálható egy véletlenszerű lottószelvény.

A megvalósítás, Java forráskód nagy egyszerű. Íme egy függvény, amely visszaadja azt kiválasztottságot jelölő logikai tömböt, amiből megfelelően indexelve kiíratható a véletlenszerűen generált lottószelvény:

Egy demóprogram, szimulációs program, oktatóprogram esetén nem is a konkrét feladat megoldása a cél/probléma. Sokkal inkább a lépésenkénti bemutatás, sok-sok konzolos kiírással vagy grafikus szemléltetéssel. Sokszor időzítővel késleltetjük, lassítjuk, gyorsítjuk a folyamatot, de előfordul az is, hogy rengetegszer megismételjük a tevékenységet és a kapott adatokat elemezzük, következtetünk belőlük. Most például a ciklust ki kell cserélni olyan léptetésre, ami a felhasználó kattintásához kötődik. Ha kéri a következő tippet a lottószelvényre, akkor megkapja. Ha nem kattint, akkor nem kapja meg. Az is egy csalás/lehetőség lenne, hogy a háttérben nem is logikai tömb adatszerkezet van, csupán a vizualizáció miatt tűnik annak.

Az elkészült demóprogram megvalósítja a fenti algoritmust. Az alábbi képernyőképeken végiglapozható a demóprogram működése. Nem is az algoritmus megvalósítása a kihívás és a cél, hanem a folyamat lépésenkénti megjelenítése. Java swing grafikus felület készült el.

 

A demóprogram Start állapottal indul. Olyan a lépésenként tesztesetek sorozata, hogy a lottószelvény nem sikerül rögtön elsőre. Az egyik szám már előfordult korábban. A demóprogram Stop állapottal ér véget. A demóprogram pénztárszalagszerűen időnként jelzi, hol tart éppen. A demóprogram képes egymás után több lottószelvényt is előállítani és az emlékezete egyetlen szelvényre korlátozódik.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni. A Java EE szoftverfejlesztő tanfolyamunkon, a szakmai modul 33-40. óra Java Server Pages alkalmain már a program böngészőben futó változatát is el tudjuk készíteni.