Stream API lambda kifejezésekkel

lambda kifejezés logo

lambda kifejezés logoKorábban blogoltunk már a Stream API-ról és a lambda kifejezésekről: Ismerkedjünk lambda kifejezésekkel! Most másképpen közelítve újra foglalkozunk a témával.

Tanfolyamainkon szinte minden adatszerkezethez, tömbhöz, kollekcióhoz, fájlkezeléshez kötődő témakörben használjuk mindkettőt. Áttekintjük az ezekhez szükséges minimális verziószámot, a szintaktika fejlődését, az együttes használat elvi és gyakorlati lehetőségeit. A szükséges alapfogalmakat definiáljuk: hozzárendelési szabály, funkcionális interfész, metódus referencia, alapértelmezett metódusok, típus kikövetkeztetés képessége, generikus és funkcionális programozás. párhuzamos adatfeldolgozás lehetőségei.

Összehasonlításokat is végzünk: a lambda előtti verziók lehetőségei, korlátai, tipikus lambda hibák, mikor mit érdemes és mit nem érdemes használni, paraméterek típusait megadjuk vagy elhagyjuk, hagyományos kollekciós műveletek (azért a generikusság előtti időkre már nem térünk ki) és folyam feldolgozás (adatforrás meghatározása, közbenső és végső műveletek).

Most azokat a Stream API-hoz és lambda kifejezésekhez kötődő bevezető mintapéldákat ismertetjük, amiket részletesen elemzünk tanfolyamaink szakmai moduljának kontakt óráin. Ezek közül közösen meg is írunk néhányat, kombinálunk is néhányat egy-egy összetett adatfeldolgozó művelet megvalósítása során. Programozási tételenként specifikáljuk a feladatokat és megmutatunk néhány megoldást.

Adatforrás

100 db olyan véletlen kétjegyű számot állítunk elő generikus listában, amelyek között biztosan előfordul legalább egyszer a 80.

Elemi programozási tételek

Sorozatszámítás

Kiírjuk, hogy mennyi a listában lévő számok összege:

Eldöntés

Két kérdésre adunk választ. Van-e a listába lévő számok között 35 (konkrét elem), illetve páros (adott tulajdonságú elem)?

Kiválasztás

Kiírjuk, hogy a biztosan előforduló (legalább 1 db közül balról az első) 80, hányadik helyen (index) található meg:

Megszámolás

Kiírjuk, hogy hány db öttel osztható szám (adott tulajdonságú elem) található a listában:

Szélsőérték-kiválasztás

Kiírjuk a listában lévő legkisebb számot (értéket, nem indexet):

Összetett programozási tételek

Másolás

Készítünk egy másolatot a lista elemeiről (közben esetleg mindegyiket meg is változtathatjuk):

Kiválogatás

A listában lévő számok közül kiválogatjuk az öttel osztható számokat:

Szétválogatás

Külön-külön szétválogatjuk a listában lévő páros és páratlan számokat:

Unió

A korábban szétválogatott páros és páratlan számokat tartalmazó halmazok unióját állítjuk elő:

Metszet

A korábban szétválogatott páros és páratlan számokat tartalmazó halmazok metszetét állítjuk elő:

Összefésülés

A korábban szétválogatott páros és páratlan számokat összefésüljük:

A program eredménye a konzolon

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam, a Java EE szoftverfejlesztő tanfolyam és a Java adatbázis-kezelő tanfolyam szakmai moduljának több alkalmához is kötődik. A Stream API-val és a lambda kifejezésekkel sokszor foglalkozunk.

Korábban is blogoltunk már a Stream API-ról és a lambda kifejezésekről: Ismerkedjünk lambda kifejezésekkel!

Telefonos billentyűzettel kódolunk/dekódolunk

Telephone-keypad

Telephone-keypadNem­rég egy be­tű­ket és szá­mo­kat tar­tal­ma­zó kó­dolt szö­ve­get kap­tam azzal a ké­rés­sel, hogy pró­bál­jam meg­fej­te­ni. A tit­ko­sí­tott szö­ve­get a kö­vet­ke­ző for­má­tum­ban kap­tam: 88.222.666.333.444.888.33.333. Azt is le­he­tett ró­la tud­ni, hogy a meg­fej­tés csak az an­gol á­bé­cé be­tű­it és szá­mo­kat tar­tal­maz­hat. Ilyen és ehhez ha­son­ló kó­dok meg­fej­té­se­it az Ingress ne­vű AR (augmented reality) já­ték­ban le­het fel­hasz­nál­ni (Android és iOS plat­for­mon is el­ér­he­tő), ahol a já­ték fej­lesz­tői min­dig va­la­mi­lyen egy­sze­rűbb kó­do­lás­sal juttat­ják el a já­té­ko­sok egy cso­port­ja szá­má­ra a kó­do­kat, ami­ért a já­ték­ban extra fel­sze­re­lés­hez le­het jut­ni. Az elő­ző for­du­lók­ban már ta­lál­koz­tam Base64 és Morse-kódolás­sal is, így gya­ní­tot­tam, hogy a mos­ta­ni felad­vány meg­fej­té­se sem le­het ne­héz fela­dat. Úgy gon­dol­tam, hogy a szá­mok kö­zötti pon­tok egy-egy ka­rak­ter el­vá­lasz­tá­sát je­lent­he­tik, míg a szám­je­gyek da­rab­szá­ma is hor­doz­hat hasz­nos in­for­má­ci­ót, nem csak az ér­té­kük. In­for­ma­ti­kus lé­vén rög­tön az ASCII táb­la ju­tott eszem­be, de bár­hogy pró­bál­tam va­la­mi­lyen le­ké­pe­ző függ­vényt al­kot­ni, nem si­ke­rült a szá­mo­kat le­szű­kí­te­ni a be­tűk és szá­mok tar­to­má­nyá­ra. A vég­ső megol­dást egy csa­pat­tár­sam se­gí­tett meg­ta­lál­ni, aki a jobb ol­da­lon lát­ha­tó ké­pet küld­te el ne­kem.

Például kódoljuk a SZOFTVERFEJLESZTES szöveget és ezt kapjuk: 7777.9999.666.333.8.888.33.777.333.33.5.555.33.7777.9999.8.33.7777, amit dekódolva természetesen visszakapjuk az eredeti szöveget. Hogyan működik mindez?

Tegyük fel, hogy a kódolás és dekódolás során csak az angol ábécé nagybetűit és a szóközt fogjuk használni. Hasznos néhány konstans deklarációja: a nyomógombok feliratai szövegként ( TABLE1) és tömbben ( TABLE2), szeparátorok nélküli ábécé ( TABLE3) a kódolás elvégzéséhez, valamint a dekódoláshoz szükséges szöveg ( TABLE4):

A kódolás (titkosítás) lépései

A kódolás elvégzését ellenőrzésnek kell megelőznie, hiszen a paraméterként átvett szöveg ( text) nem kódolható ha üres ( isEmpty()) vagy érvénytelen karaktert tartalmaz (olyat, ami nem szerepel a telefon nyomógombjain: ékezetes vagy írásjel). Bármilyen probléma esetén a kódoló metódus kivételt dob. A kódolás során a szöveget automatikusan nagybetűsként értelmezzük.
A kódolás során minden karakter (pl.: E) esetén ki kell választani, hogy a TABLE2 tömb melyik elemében szerepel (pl.: j=3, a nyomógomb felirata DEF) és a j-edik elemben tárolt szöveg hányadik pozícióján található (pl.: index=1). Tehát tudjuk, hogy a C karakter kódja 33, azaz ehhez a 3-as gombot kétszer ( index+1) kell lenyomni. A Java nyelvben tömbök indexelése és a szövegben lévő karakterek pozíciója is nulla bázisú sorszámmal történik. A karakterek 1-4 (változó) hosszú kódjai közé pont kerül ( coded).

A dekódolás (visszafejtés) lépései

A dekódolás elvégzését is ellenőrzésnek kell megelőznie, hiszen a paraméterként átvett szöveg ( text) nem dekódolható ha üres ( isEmpty()) vagy érvénytelen karaktert tartalmaz (olyat, ami nem feleltethető meg a telefon nyomógombjain található karakterek egyikének). Bármilyen probléma esetén a dekódoló metódus is kivételt dob.
A dekódolás során minden karakter kódja (pl.: 33) esetén szükség van annak hosszára ( length=2) és első karakterére számként ( index=3). Ezek alapján tudjuk, hogy a TABLE2 tömb index-edik ( DEF) elemének length-1-edik eleme a dekódolt karakter ( E). A dekódoló metódus nem tesz szeparátort a dekódolt karakterek ( decoded) összefűzése során. A változó hosszúságú kódolt szöveg elemeiből egykarakteres dekódolt szövegdarabok keletkeznek.

Az ellenőrzés lépései

A logikai értékkel visszatérő ellenőrző függvény ( isValidText()) feladata eldönteni, hogy a kódolás/dekódolás során használandó szöveg ( text) minden karaktere feldolgozható, azaz a folyamat során értelmezhető (másképpen: a validCharacters szöveg tartalmazza). Optimális esetben a text hossza megegyezik a benne lévő feldolgozható/értelmezhető karakterek számával (végighalad a ciklus a text-en), egyébként leáll a ciklus az első problémás karakternél.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ez a feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás, 2. rész alkalmához, valamint minden tanfolyamunk orientáló moduljának 1-4. óra: Programozási tételek alkalmához kapcsolódik.

Doktoranduszok programoznak

it-tanfolyam.hu adatok elemzése

it-tanfolyam.hu adatok elemzéseSaját doktorandusz csoporttársaimmal többször beszélgettünk már arról, hogyan tudnák/tudják használni a programozás eszköztárát, módszereit, lehetőségeit saját kutatási munkájukban, beépítve a kutatási folyamat egyes lépéseibe, illetve disszertációjuk elkészítésébe.

Mivel a 10 fős csoportban mindenkinek más az alapvégzettsége, így szoftverfejlesztéshez, programozáshoz közös szókincs és terminológia haladó szinten természetesen nincs, viszont közös bennünk, hogy mindannyian alkotunk különféle modelleket és elemzünk adatokat.

Például:

  • a mérnökök, fizikusok, geográfusok, biológusok többféle kísérletet végeznek el, szimulációkat terveznek és futtatnak, mérőeszközöket és műszereket használnak,
  • az informatikusok különböző matematikai eszközöket alkalmazva objektumorientált – vagy másféle – modellezést végeznek, szoftvereket terveznek, javítanak, újraírnak.

Adatokat is elemzünk, ki-ki előképzettségének megfelelően:

  • kérdőívező szoftverekből exportálva valamit,
  • Excel munkalapokon, függvényekkel, adatbázis-kezelő funkciókkal, kimutatásokkal (Pivot táblák),
  • különböző fájlformátumokkal (CSV, XML, JSON, egyedi) dolgozunk és konvertálunk A-ból B-be,
  • távoli adatbázisokhoz, felhőbeli adattárházakhoz csatlakozunk, lekérdezünk és kapunk valamilyen – többnyire szabványos – adathalmazt,
  • matematikai, statisztikai szoftvereket használunk, például: MATLAB, Derive, Maple, SPSS.

Önszerveződően összeállítottunk egy olyan két részből álló tematikát, ami mindannyiunk számára hasznos. A 64 óra két 32 órás modulból áll: Java programozás és SPSS programrendszer.

Java programozás modul

  • 1-8. óra: Objektumorientált modellezés, MVC rétegek, algoritmus- és eseményvezérelt programozás
  • 9-16. óra: Fájlkezelés és szövegfeldolgozás (XLS, CSV, XML, JSON formátumú adatok írása, olvasása, feldolgozása)
  • 17-24. óra: Adatbázis-kezelés JDBC alapon (SQL parancsok, CRUD műveletek, hierarchikus lekérdezések)
  • 25-32. óra: Komplex adatfeldolgozási feladatok megoldása programozási tételek használatával

SPSS programrendszer modul

  • 1-8. óra: Bevezetés az SPSS-be, interakciós eszközök, adatmátrix, menük: Transform, Analyze, szkriptek futtatása
  • 9-16. óra: Alapstatisztikák kérése, kereszttáblázatok készítése, hipotéziselmélethez kötődő funkciók, normalitásvizsgálat, minták összehasonlítása t-próbával
  • 17-24. óra: Regresszió-analízis: lineáris, nemlineáris, többváltozós; Idősorok elemzése: szűrés, periodogram, trendelemzés
  • 25-32. óra: Mesterséges neuronhálózatok: matematikai modell és működése

Mivel mindenki doktorandusz a csoportban, így a különböző MSc-s alapvégzettsége ellenére mindannyiunknak vannak strukturális programozáshoz kötődő alapismeretei, valamint adatok elemzéséhez szükséges elméleti matematikai/statisztikai alapjai. Az én részem a 32 órás Java programozás modul, ami 2018.10.28-tól 2018.12.09-ig tart hétvégi napokon. Ez nagyban lefedi a Java SE szoftverfejlesztő tanfolyamunk tematikáját. A koncepciót once-in-a-lifetime jelleggel dolgoztuk ki azzal a fő szándékkal, hogy hatékonyabban működjünk együtt a jövőben.

Ismerkedjünk lambda kifejezésekkel!

lambda kifejezés logo

lambda kifejezés logoA Java 8-tól használhatunk lambda kifejezéseket, amivel hatékonyabban, rövidebben és könnyebben valósíthatunk meg tipikus műveleteket.

Korábban általában az eseménykezelést globálisan (interfészek implementálásával), vagy lokálisan (névtelen interfész implementálásával) oldottuk meg, illetve besegítettek adapterek is. Sok- és többféle eseménynél ez a forráskódunk elaprózódásához vezetett, ami nehézkes olvashatóságot és karbantarthatóságot eredményezett.

A lambda kifejezés egy olyan kódrészlet, amelyben valamihez hozzárendelünk valamit, például egy metódus paraméteréhez a végrehajtandó forráskódot ( x -> y). Ehhez építünk a funkcionális interfészekre és a metódus referenciákra (szintén Java 8-tól), illetve a típus kikövetkeztetés képességére is (Java 7-től).

A kiválogatás programozási tételt valósítjuk meg többféle implementációval, felhasználva a Java nyelv újdonságait, és a fentieken kívül még a Stream API-t is.

Adatforrás

Először is kellenek adatok, hiszen azokat dolgozzuk fel. Egy Termek osztályú egyszerű POJO-val dolgozunk, nev és ar tulajdonságokkal, generált konstruktorral, getter metódusokkal és toString()-gel. Az adatforrást biztosító absztrakt Lista ősosztályban a POJO-kból felépítünk egy termekLista nevű generikus listát (például CSV vagy XML fájlból beolvasva az összetartozó adatokat) – listaFeltolt() eljárás – és implementálunk egy univerzálisan használható listaKiir(String uzenet, List termekLista) eljárást is.

Örökítünk három utódosztályt a Lista osztályból, amelyek különbözőképpen dolgozzák fel a termekLista-t, bemutatva a fejlődés útját, illetve a rendelkezésre álló lehetőségeket.

Válogassunk a termékek közül négyféleképpen és adjuk vissza azon termékeket, amelyek:

  • limit alatti áron kaphatók,
  • ára limit1 és limit2 közé esik (zárt intervallumban),
  • neve adott szöveggel kezdődik (kis- és nagybetű különbözik),
  • neve adott szöveget tartalmaz (kis- és nagybetű nem különbözik)!

1. változat

Hagyományos megközelítéssel a fentiek megvalósításához külön egy-egy függvény tartozik, ahogyan az alábbiakban látható:

A termekListaLimitAr1() függvényben látható ötféle lehetőség a kiválogatásra a termekLista-ból:

  • //1: hagyományos, index alapú változat,
  • //2: iterátorra közvetlenül építő változat,
  • //3: bejáró ciklus, iterátorra közvetve építő változat,
  • //4: Stream API-ra építő változat, kiválogatás lambda-kifejezéssel ( filter), a megmaradó termékekre végrehajtandó forEach művelet lambda kifejezéssel,
  • //5: Stream API-ra építő változat, kiválogatás lambda-kifejezéssel ( filter), a megmaradó termékeket összegyűjtő/leképező collect művelettel.

Jól megfigyelhető, hogy négy függvény vázszerkezete megegyezik, és csupán a filter-ben található lambda-kifejezések különböznek. Ez a megoldás meglehetősen redundáns, nem általánosítható, valamint további műveletek megvalósítása további függvények implementálását igényli.

2. változat

Őrizzük meg a négyféle funkciót, sőt tegyük lehetővé, hogy ez tetszőlegesen bővíthető legyen. Használjunk saját generikus, funkcionális Feltetel interfészt saját döntés megvalósítását biztosítani tudó implementálandó teszt() függvénnyel, az alábbiak szerint:

A termekListaFeltetel() függvény paramétere a saját Feltetel interfészünket implementáló névtelen osztály példánya, amely felhasználható:

  • //6: ciklusban egyszerű feltételként,
  • //7: Stream API filter műveletében megadott lambda-kifejezésben,
  • //8: a listaKiir() metódusban paraméterként átadva névtelen osztály példányaként,
  • //9-től: a listaKiir() metódusban paraméterként átadva lambda-kifejezésként.

Látszik, hogy többféle kiválogató művelethez egyetlen implementált függvény szükséges. Ez a megoldás már jóval általánosabb.

3. változat

A saját interfész helyett használjuk fel a beépített Predicate generikus, funkcionális interfészt, építve annak test() függvényére az alábbiak szerint:

Belépési pont

Végül következzen a közös belépési pont, amelyben tetszőlegesen aktiválható és tesztelhető mindhárom változat működése:

Mit ír ki a program a konzolra?

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, 25-28. óra: Objektumorientált programozás 3. rész, valamint a Java EE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: XML feldolgozás alkalmaihoz kötődik.

Máskor is blogolunk a témakörben: Stream API lambda kifejezésekkel.

Euler állatos feladata

EulerAllat

EulerAllatValaki sertést, kecskét és juhot vásá­rolt, összesen 100 állatot, pontosan 100 aranyért. A sertés darabja 3 és fél arany, a kecskéé 1 és egyharmad, a juhoké fél arany. Hány darabot vehetett az egyes állatokból?

Kezdjük informatikai eszközökkel megoldani a problémát és írjunk Java nyelven forráskódot!

1. megoldás

Klasszikus ötletként teljes leszámolást (brute force) megvalósítva ágyazzunk egymásba három ciklust és léptessük mindhárom változót ( s, k, j) 1-100-ig [//3, //4, //5]!

Így biztosan megkapjuk az összes megoldást, hiszen minden lehetséges értéket behelyettesítünk a feltételvizsgálatnál. A lépésszám 1000000, ami nagyon sok. Próbáljuk fokozatosan csökkenteni a lépésszámot!

2. megoldás

Vegyük figyelembe, hogy mindegyik fajta állatból kell legalább egyet venni, így léptessük a változókat 1-98-ig! Másképpen: ha bármelyik állatból a maximális darabot vennénk (98-at), a másik kettőből még mindig tudjunk venni minimális darabot (1-et, 1-et) [//3, //4, //5].

A lépésszám 941192.

3. megoldás

Vegyük figyelembe, hogy összesen 100 db állatot kell venni, így k legfeljebb 99-s, illetve j legfeljebb 100-s-k lehet [//4, //5]!

A lépésszám 161700.

4. megoldás

Vegyük figyelembe, hogy összesen 100 db aranyat költhetünk! A sertés a legdrágább: ezért s legfeljebb egészrész(100/3,5)=28 darab lehet, hasonlóan k legfeljebb egészrész(100/(4.0/3)-3,5)-s, azaz 71-s lehet [//3, //4].

A lépésszám 90692.

5. megoldás

Következtessünk abból, hogy az arany mérőszáma (100) egész szám: a sertések és juhok ára félre végződik és ezek összege tud lenni egész szám többféleképpen is, így a kecskék számának hárommal oszthatónak kell lennie, mivel csak így tud lenni egész szám a néhányszor négyharmad [//4].

A lépésszám 29439.

6. megoldás

Mivel páros számú állatot kell venni és s+j páros szám, így k-nak is párosnak kell lennie! A hárommal osztható számok közül minden másik páros, azaz hattal is osztható [//4].

A lépésszám 14132.

7. megoldás

Építsük be, hogy s+j legyen páros. [//5].

A lépésszám 7130.

8. megoldás

Ha s és k ismert, akkor j könnyen adódik 100-s-k-ként és nem kell rá ciklust szervezni. [//5].

A lépésszám 252.

Akinek még van kedve tovább próbálkozva csökkenteni a lépésszámot, íme néhány ötlet:

  • Az s maximális értéke könnyen csökkenthető 16-ra, ekkor a k legfeljebb 60-3*s és j adódik, így egyszerűsíthető lehet a 6*s+5.0/3*k==100 feltétel, valamint az eredmény kiírásánál j helyett 100-s-k. Ekkor a lépésszám 88.
  • Az s osztható öttel, így a ciklusa megszervezhető for(int s=5; s<=15; s+=5)-ként, amivel a lépésszám 14.
  • A k is adódik (100-6*s)*3/5.0-ként és a módosított k==Math.round(k) feltétellel a lépésszám 3.

Próbálkozhatunk egy kis matematikával is!

Néhány ötlet:

  • Egyszerű műveletekkel könnyen adódik, hogy 21s+8k+3j=600 és j=100-s-k, illetve s<600/21 és k<600/8-21s. Ezeket az összefüggéseket felhasználva is írhatunk programot.
  • Klasszikus diofantoszi (diofantikus) többismeretlenes algebrai egyenletrendszerként is megoldhatjuk a feladatot.
  • Egyebek: következtetés, kizárás, egyenlőtlenségek, becslések, kongruencia, szorzattá (hatvánnyá) alakítás, illetve az sem rossz ötlet, hogy “ránézek és kész”.

Végül a feladat megoldásai

5 db sertés és 42 db kecske és 53 db juh
10 db sertés és 24 db kecske és 66 db juh
15 db sertés és 6 db kecske és 79 db juh

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ez a feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, illetve 9-12. óra: Metódusok, rekurzió alkalmához, valamint minden tanfolyamunk orientáló moduljának 1-4. óra: Programozási tételek alkalmához kapcsolódik.