Koch-görbe rajzolása

Koch-görbeA Koch-görbe egyike a legrégebben ismert egyszerű fraktáloknak. Mint ilyen, önhasonlóan rekurzív. Az önhasonlóság azt jelenti, hogy az ábra tetszőleges részét felnagyítva mindig hasonló/ugyanolyan részek jelennek meg (a méretaránytól függetlenül). Az n=1 szinten a Koch-görbe kiindulópontja egy szabályos háromszög. A n+1-edik szinten az n-edik szinten található szakaszokat harmadoljuk, és a középső szakasz helyére egy harmad akkora háromszög két szárát illesztjük (az alapját kihagyjuk). Ezt rekurzívan folytatva kapjuk meg a Koch-görbét, másképpen Koch-féle hópelyhet.

Írtam egy egyszerű Java programot, amely n=1-től 9-ig paraméterezhetően kirajzolja a Koch-görbét egy grafikus felületre. Így működik:

Koch-görbe rajzolását bemutató program működése

A program elkészítéséhez néhány alapvető dolgot kell csupán tudni:

  • Vászontechnikával tudunk swing GUI felületre ( Graphics osztályú g objektum) rajzolni, ahol a koordináta-rendszer origója egy téglalap alakú terület bal felső csúcsa, X jobbra növekszik, Y pedig lefelé növekszik.
  • Kétféle szín áll rendelkezésre: háttérszín (most Color.WHITE), illetve rajzolószín (most Color.BLUE).
  • A rajzoláshoz grafikai primitíveket használhatunk, például pont, szakasz, téglalap, ellipszis. Szakaszt két végpontjának koordinátáival tudunk rajzolni a drawLine() metódussal.
  • Be kell állítani a vászon méreteit, azaz annak a komponensnek ( JPanel-ből öröklött KochPanel osztályú pnKoch objektum) a méreteit, amelyre ráfeszül a vászon.
  • Egy Slider osztályú sSzint nevű vezérlőobjektum ChangeListener figyelőinterfész stateChanged() eseménykezelő metódust implementáló objektumával paraméterezzük a rajzolást 1-től 9-ig.
  • A pnKoch objektumnak küldött repaint() üzenet/metódushívás meghívja a felüldefiniált paintComponent() metódust.

A szakasz négy darab harmad akkora szakaszra osztását a megfelelően paraméterezett rekurzív metódushívások oldják meg az alábbi lépéseket követve:

Koch-görbe rajzolásának fázisai

A rekurzív rajzolást a koch() metódus végzi el, ahol a fraktál szabályának megfelelően szakaszharmadolás és a szükséges pontok koordinátáinak (szakaszok végpontjai) kiszámítása történik:

A Koch-görbének van néhány érdekes tulajdonsága:

  • kerülete minden rekurzív lépésben minden határon túl növekszik, azaz a végtelenhez tart,
  • területe véges, hiszen minden rekurzív lépésben belefér a háromszög köré írható körbe,
  • dimenziója tört, ~ 1,261859.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomra építő 29-36. Grafikus felhasználói felület alkalomhoz kötődik.


Ajánljuk a Java SE szoftverfejlesztő tanfolyam kategóriából

“Koch-görbe rajzolása” bejegyzéshez 5 hozzászólás

Szólj hozzá!