Keresztrejtvény készítése

Támogatjuk a keresztrejtvények készítését Java programmal. A program grafikus felülete eszköztárból és a keresztrejtvényből áll. Az elkészült programban 10×10-től 15×15-ig beállítható négyzetrács készíthető elő. A tiltott négyzetek száma 15-től 30-ig beállítható. Mivel a tiltott négyzetek helyzete véletlenszerű, így nem biztos, hogy az elsőre jó/szerencsés lesz, ezért újragenerálható a négyzetrács. A program a tipikus követelményeknek megfelelően sorfolytonosan sorszámozza a négyzetrács elemeit, ami alapján megadhatók hozzá a vízszintes és függőleges feladványok. A program az elfogadott négyzetrácsot többféle képformátumban is el tudja menteni.

Az elkészült Java program grafikus felülete

Objektumorientált tervezés

A keresztrejtvény ábrája egy négyzetrácsból áll, amelyben rejtvénymezők helyezkednek el. A rejtvénymezőnek megfelel egy örökítéssel felüldefiniált címkekomponens. A rejtvénymezőt körülveszi egy szegély/keret, tiltott vagy sem állapotától függően fekete vagy fehér a háttérszíne, valamint van a bal felső sarkához igazított kis méretű betűvel nem kötelezően megjeleníthető sorszáma. A tiltott és sorszám tulajdonságait kell tudni beállítani és megkérdezni. Ez a feladatban a RejtvenyMezo POJO. A négyzetrács sorai és oszlopai azonos méretűek (pixelre és darabszámra egyaránt).

Algoritmus a keresztrejtvény sorszámozására

A rejtvénymezők kétdimenziós négyzetes mátrixban/tömbben helyezkednek el. A sorszámozáshoz hasznos, ha a négyzetrácsot körbeveszi egy tiltott rejtvénymezőkből álló keret. Először a rács sorain és oszlopain végighaladó egymásba ágyazott ciklusok létrehozzák a POJO-kat úgy, hogy a négyzetrács keretén lévő rejtvénymezők tiltottak, a többi nem tiltott. Ezután véletlenszerűen ki kell választani – a még nem tiltottak közül – a szükséges mennyiségű tiltott rejtvénymezőt. Ezután sorfolytonosan sorszámozni kell azokat a rejtvénymezőket, ahol vízszintes vagy függőleges feladvány kezdődik. Ehhez is két egymásba ágyazott ciklus kell, amelyben minden még nem tiltott rejtvénymező egyre növekvő sorszámot kap, ha tőle balra tiltott és tőle jobbra nem tiltott rejtvénymező helyezkedik el, de akkor is, ha felette tiltott és alatta nem tiltott rejtvénymező található.

A keresztrejtvényt sorszámozó algoritmus Java megvalósítása

Továbbfejlesztési lehetőségek

  • A feladványok listázhatók és kideríthető a hosszuk.
  • A tiltott rejtvénymezők véletlenszerű elhelyezése helyett lehetne valamilyen szabály, stratégia az egymáshoz való helyzetükre, távolságukra, közvetlen szomszédságukra vonatkozóan. Figyelembe vehetnénk valamilyen szimmetriát is, mintákat, alakzatokat is. Véletlenszerű elhelyezésük nem biztos, hogy mindig jó/szerencsés: például a tiltott rejtvénymezők körbezárhatnak egy nem tiltottat, hosszabb feladványokat nehezebb találni…
  • A Java SE szoftverfejlesztő tanfolyam tematikájához kötődően többféle szótárból, fájlformátumból betölthetünk a feladványokhoz használható, például 7 betűs országnevek, 2 betűs kémiai elemek, női/férfi keresztnevek, autójelek, pénznemek, szinonimák…
  • A Java EE szoftverfejlesztő tanfolyam tematikához kötődően többféle webes adatforrásból, Wikipédiából, szótárból, API hívásokkal letölthetünk a feladványokhoz használható listákat, meghatározásokat, kulcs-érték párokat. A swing-es felületet lecserélhetjük böngészőben futó webes GUI-ra is.
  • A Java adatbázis-kezelő tanfolyam tematikájához kötődően a fentiek kiegészítéseként tervezhetünk és építhetünk helyben tárolt tudástárat, adatbázist, amiből hatékonyan lekérdezve adhatunk feladványokat a keresztrejtvényhez.
  • Miután a fentiek szerint valahogyan – tipikusan visszalépéses algoritmussal – meghatároztuk a feladványokat, a keresztrejtvényből menthetünk kitöltött változatot is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Fibonacci-spirál

Fibonacci nap

Fibonacci nap 2018A Fibonacci-spirál a népszerű Fibonacci-sorozat elemei által meghatározott oldalhosszúságú négyzetekbe rajzolt maximális sugarú negyedkörök megfelelően összeillesztett darabjaiból/sorozatából áll. Sokszor hasonlítják az arany spirálhoz (jól közelíti), amely az aranymetszéshez kötődik.

A Fibonacci-spirál

Vegyük a Fibonacci-sorozat első 10 elemét! Rajzoljuk egymás mellé az alábbi elrendezésben belülről kifelé haladva az 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 oldalhosszúságú négyzeteket (az alábbi ábrán vékony sárgával jelölve). Piros színnel rajzoljuk bele a négyzetekbe a négyzet oldalhosszával megegyező sugarú negyedköröket. A negyedkörök megfelelő elrendezésben folytonos görbét alkotnak, és ezt nevezzük Fibonacci-spirálnak (az alábbi ábrán vastag pirossal jelölve).

Fibonacci-spirál 1

A rajzolás bármeddig folytatható, mert a sorozat végtelen, a négyzetek illeszkednek és az ábra rekurzív, önhasonló. Az alábbi animáció mutatja, hogyan alakul a spirál a nézőpont közelítésével. A viselkedés távolítás során is azonos lenne.

Fibonacci-spirál 2

Korábban blogoltunk már a Fibonacci napról, amelyet minden évben november 23-án ünneplünk. A sorozat első néhány eleméből összeáll a 11.23. és értelmezhető dátumként. Most nem a sorozat elemeinek előállítására fókuszálunk, hanem arra, hogy ezekből felépítsük a Fibonacci-spirált.

Készítsünk Java programot!

Grafikus felületű Java programot készítünk, amely 21 animációs fázisban mutatja be a Fibonacci-sorozat első 10 eleméből álló Fibonacci-spirál felépítését. A rajzolás fázisai:

  • Az 1. fázis a kiindulópontként tekinthető fehér, üres rajzlap. A rajzlap fekvő, mérete 890*550 pixel, amelyre éppen elfér a 10 negyedkörből álló spirál.
  • A 2-11. fázisban megfelelő pozícióba/koordinátákra kerülnek fel az ábra vázát alkotó négyzetek, belülről kifelé haladva. A négyzetek oldalainak hosszúsága a sorozat elemeinek megfelelő. A szomszédos négyzetek különböző színekkel kitöltöttek és mindegyikben megjelenik a sorozat megfelelő eleme.
  • A 12-21. fázisban – szintén belülről kifelé haladva – a négyzetek törlődnek és helyükre a spirált alkotó negyedkörök kerülnek fekete színnel. A 21. fázist tekintjük végeredménynek.

A fázisok kézzel, nyilakkal jelölt (Első, Előző, Következő, Utolsó) vezérlő nyomógombokkal megjeleníthetők, illetve egyben, időzítve animációként is lejátszható a rajzolási folyamat. Az elkészült program működése megfigyelhető az ábrán:

Fibonacci-spirál Java program

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni.

Hóesés szimuláció

Hóesés szimulációt tervezünk és valósítunk meg Java nyelven. A téma igazi örökzöld. Elvileg minden télen aktuális. 😉 A grafikus felülethez és az eseménykezeléshez a swing gyűjteményt használjuk. Adott egy téglalap alakú terület amelyen – méretéhez igazodva – több száz hópehely mocorog. A területet önállóan programoztuk le – azaz ez alkotja a teljes GUI-t –, de lehetne egy nagyobb kép része is. Többféleképpen is beépítünk véletlenszerűséget a szimulációba. Tervezünk is, hiszen az sosem árt. 😉

Többnyire beépített komponenseket, elemeket használunk, de van saját, örökítéssel testre szabott komponensünk is:

  • A szimuláció a Window osztályból példányosított felületen működik, amely JFrame utód. Nem átméretezhető és látható.
  • A területet JPanel típusú pnTransparentWindow alkotja. Mérete 300*200 pixel. Színe a szürke egyik árnyalata. Ezen mozognak a hópelyhek.
  • A hópehely Snowflake típusú JPanel utód. Mérete 2*2 pixel. Színe fehér. Saját swing-es Timer biztosítja az eseménykezelését. A szimulációban 600 hópehely szerepel.

Az elkészült szimuláció

A teljes forráskódból íme a hópehely megvalósítása

A hópehelynek „tudnia kell” hol van, azaz mekkora területen mozoghat, ez a rectangle. A hópehelynek van size mérete. A hópehely saját magát mozgatja a területen a timer segítségével. Az időzítés várakoztatására/késleltetésére vonatkozó delay értéke véletlenszerűen 50, 100, , 250 milliszekundum lehet. Másképpen: a szél által össze-vissza fújt hópelyhek között lehetnek lassabban és gyorsabban mozgók is. Az eseményobjektumhoz lambda kifejezés rendeli hozzá a reakciót jelentő, mozgást megvalósító move() metódus meghívását, amely így adott időközönként bekövetkezik.

A hópelyhet a konstruktora hozza létre. Átveszi azt a pnTransparentWindow területet, amelyre később rákerül a Window példányosítása során. A gyengébb setSize() metódus helyett az erősebb setPreferredSize() metódus állítja be a méretet. Véletlenszerű x és y pozícióba kerül ki/fel a területre. A setBounds() örökölt metódus beállítja a pozícióját és méretét. Erre épít a fogadó oldalon az abszolút helyzet, külön elrendezésmenedzser nélkül. Végül a hópehely átlátszó, fehér és elindítja saját időzítőjét a timer.start() metódushívással.

Az időzítés/várakoztatás véletlenszerűsége után íme a második véletlenszerűség a szimulációban. A hópehely mozgása során a szél által össze-vissza fújva eltérő eséllyel/valószínűséggel mozog 8 lehetséges irányba az alábbiak szerint:

  • 5-5% eséllyel felfelé, azon belül jobbra vagy balra (átlósan),
  • 10-10% eséllyel jobbra vagy balra,
  • 20-20% eséllyel lefelé, azon belül jobbra vagy balra (átlósan),
  • 30% eséllyel lefelé, függőlegesen,
  • felfelé, függőlegesen nem mozog.

Az esélyek összege 100%. Másképpen kulcsszavakban: 1 = biztos esemény (teljes eseménytér, nincs más lehetőség), egymást kizáró események, geometriai valószínűség. A képen középen lévő hópehely a 8 szomszédja közül a 7 szóba jöhető közül valamelyikre adott eséllyel mozog. A geometriai valószínűséget az ábra alapján az óramutató járásával megegyezően leképeztük az 1..100 intervallumra:

A move() metódus megvalósítja a fenti tervnek megfelelően a hópehely mozgatását. Első lépésben tudni kell a jelenlegi/kiinduló location helyét (a bal felső csúcs, elkérjük). Ezután véletlenszerű esély/ tip generálódik. Az első elágazásban a hópehely translate() metódusával eltoljuk az előbb elkért pontot. Az eltolás relatív. Az utolsó elágazásban kompenzálunk, ha a hópehely alul kilépne a területről. Ekkor felül újra belép a területre. Végül beállítjuk a hópelyhet megvalósító komponenst a manipulált location helyre.

Takarékosak vagyunk: ezzel a megoldással „újrahasznosítjuk” a hópelyheket. Csak annyi van belőlük, amennyi szükséges. Nem kell őket folyamatosan megszüntetni és újra létrehozni. Nem mozognak feleslegesen. Nem mozognak olyan területen, ahol nem láthatóak.

Ötletek továbbfejlesztésre

  • A hópelyhek színe lehetne véletlenszerű a fehér és a középszürke között. Ezzel a nézőtől való távolságot, esetleg a kép élességét lehetne modellezni.
  • A szél nem feltétlenül szimmetrikus, vagy a hópelyhek mozgatását meg lehetne oldani jobbra és balra eltérő eséllyel is.
  • A terület lehetne más alakú, például trapéz, íves, kör, ellipszis.
  • Másképpen is vezérelhetnénk a szimulációt. Ahelyett, hogy most minden hópehelynek van saját időzítője, lehetne csak 5 db (lassabbak és gyorsabbak), amelyek közül véletlenszerűen kiválaszthatnánk, hogy melyik hatására mozgatjuk az adott hópelyhet. Fordítva is mehetne: az 5 db időzítőhöz előre hozzárendelhetnénk a hópelyheket. Ez így más-más felelősség, kommunikáció, üzenetküldés, vezérlés lenne az objektumok között. Hasznos tapasztalat lehet megvalósítani bármelyiket.
  • A terület lehetne egy nagyobb kép része. Például meghatározhatnánk egy tetszőleges átlátszóságot (színt vagy arányt) és többrétegű felületet megvalósítani képes JLayeredPane komponens elé vagy mögé is elhelyezhető lehetne a terület a grafikus felületen.
  • Aki kihívást keres: illessze a területet az alábbi hangulatos képre úgy, hogy a középső ablakok téglalap alakúak, a két szélső trapéz alakú vagy perspektivikus nézetű és a kör/ellipszis alakú tükörben pedig tükröződik valahonnan a hóesés látványa.
  • Még bátrabbaknak: a kandallóban lévő tüzet is lehet hasonlóan szimulálni. Itt már többféle fizikai paraméter is figyelembe vehető, például fényerősség, tükröződés. Egy 3D modellezett térben a sugárkövetés (Ray Tracing) algoritmus is megvalósítható. A hópelyheknél lehetne az egyszerű mozgástól eltérő más fizikát is programozni: rugalmas ütközéssel összetapadhatnának vagy rugalmatlan ütközéssel lepattanhatnának egymásról és mindez hathatna a sebességükre is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni.

Céline Dion – Courage World Tour

Céline Dion Courage World Tour

Céline Dion Courage World TourA Céline Dion – Courage World Tour esettanulmányunkban a turné első részének koncerthelyszíneit jelenítjük meg Google Charts segítségével. Ebben a blog bejegyzésben a tervezés, megvalósítás lépéseit tekintjük át és megmutatjuk az eredményeket. A Java és JavaScript forráskódokat most nem részletezzük.

Háromféle grafikont használunk

  • idővonal (Timeline) időpontok és helyszínek Gantt diagram-szerűen,
  • térkép (Geo Chart) városok megjelölésével és időpontok jelmagyarázatban,
  • tematikus térkép az USA államaival (szintén Geo Chart), az állam területén adott koncertek száma alapján és db jelmagyarázatban.

A tervezés és megvalósítás lépései

  1. Adatokat kell szerezni egy weboldal (https://www.celinedion.com/in-concert) feldolgozásával ( saveHTML()). Ehhez a művelet a GET. Figyelni kell a megfelelő User-Agent paraméterezésére és a karakterkódolásra ( ISO-8859-1). A kapott bemeneti folyam feldolgozását pufferelt módon érdemes elvégezni. Célszerű az adatforgalom minimalizásása érdekében a weboldal tartalmát helyi fájlba menteni ( tour.html). Ügyelni kell a kötelező és az ajánlott kivételkezelésre.
  2. Értelmezni kell a tour.html fájlt. A HTML tartalom végén JSON formátumban beágyazva elérhetők a koncert turné állomásainak adatai: nekünk kell a város ( city), helyszín ( venue), dátum/idő ( startDate). Érdemes külön fájlba menteni a tour.html-ből a JSON tartalmat ( tour.json), mert abból egyszerűen betölthető ( saveJSON()).
  3. Tanulmányozni kell a Google Charts diagramok közül azt a kettőt, amiket testre kell szabni: Timeline és Geo Chart. Tudni kell: mi a diagramot tartalmazó weboldal állandónak tekinthető eleje és vége (ezeket hasznos külön interfészben konstansként tárolni: HTMLFileContent), valamint mi az adatoktól függő része (közepe). Ismerni kell a szükséges metaadatok és adatok formátumát. Érdemes átnézni a különböző testre szabási és formázási lehetőségeket a fenti diagramtípusoknál (esetleg a többi típusból is meríthetünk ötleteket).
  4. A koncert turné állomásainak összetartozó 3 adatát le kell képezni POJO-vá ( Event). Ezt érdemes privát változókkal ( city, venue, startDate) és factory metódussal megvalósítani. Célszerű, ha az adatok visszakérésére alkalmas getter metódusok is készülnek ( getTimelineChartDataTableRow(), getGeoChartDataTableRow()), amelyek kiszolgálják a megfelelő diagramtípus igényeit.
  5. A tour.json fájl feldolgozásával (parszolásával) Event típusú generikus listába vagy JSON tömbbe könnyen leképezhetők az adatok.
  6. Hasznos egy vezérlőosztály létrehozása, amely a 3 diagramtípust előállító (HTML fájlt generáló) metódust ( createTimelineChart(), createGeoChartCity(), createGeoChartCountry()) valamint a belépési pontot ( main()) tartalmazza.
  7. Generálható az idővonalat tartalmazó timelineChart.html fájl a createTimelineChart()metódussal. Ehhez 5 oszlop megadása szükséges (ebben a sorrendben): label, city, tooltip, start, end. Az első 3 adat string, az utolsó 2 adat date típusú. Egy példa Event: ['2019.09.18.', 'Québec, QC', 'Videotron Centre', new Date(2019, 09, 18, 19, 0, 0), new Date(2019, 09, 18, 21, 0, 0)].
  8. Regisztrálni kell egy Google Cloud Platform felhasználói fiókot és tanulmányozni kell a geokódolás folyamatát és lehetőségeit, hiszen a városok nevéből (formátum pl.: 'Minneapolis, MN') szükség lesz azok térképi koordinátáira. Aktiválni kell a szolgáltatás használatához szükséges mapsApiKey-t.
  9. Generálható a városokat tartalmazó geoChartCity.html fájl a createGeoChartCity() metódussal. Ehhez 3 oszlop megadása szükséges (ebben a sorrendben): city, dateCity, no . Egy példa Event: ['Minneapolis, MN', '2019.11.01. Minneapolis, MN', 1].
  10. Generálható a régiókat/államokat tartalmazó geoChartCountry.html fájl a createGeoChartCountry() metódussal. Ez egy tematikus térkép: a különböző színek jelölik az egy régió/állam városaiban tartott koncertek számát. Ehhez az adatok megfelelő rendezését követően végrehajtott csoportváltás algoritmus szükséges. 2 oszlop megadása szükséges: country, concertNo. Egy példa adatsor: ['US-TX', 3].

Az eredmények

TimelineChart grafikon:

GeoChartCity grafikon:

GeoChartCountry grafikon:

Érdemes megismerni további – térképekhez kapcsolódó – grafikontípusokat is: Geomap, Intensity Map.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A példák a Java SE szoftverfejlesztő tanfolyam 37-44. óra: Fájlkezelés és a Java EE szoftverfejlesztő tanfolyam 1-4. óra: Elosztott alkalmazások, webszolgáltatások és 13-16. óra: JSON feldolgozás alkalmaihoz kötődnek.

ASCII művészet Java-ban

ASCII Art 4

ASCII Art 1Átte­kint­jük a ka­rak­ter­a­la­pú raj­zo­lás le­he­tő­sé­ge­it Java 2D gra­fi­ká­val, illetve a ka­rak­ter­fü­zé­rek kép­ként va­ló ke­ze­lé­sé­nek újabb le­he­tő­sé­ge­it is.

Az ASCII művészet jelentése és kezdete

Az ábécék betűiből/szövegeiből kialakított ábrák egyidősek lehetnek az írásbeliséggel. A technológiától függetlenül a karakterekből kialakított kép megjeleníthető: papír és penna vagy írógép, illetve számítógép és nyomtató vagy monitor segítségével.
Az ASCII művészet (ASCII art) tágabb értelemben a szövegalapú vizuális művészetre vonatkozik. Szűkebb értelemben véve a számítógépes grafika részterületének tekinthető. Az ASCII művészet számítógépet használ nyomtatható standard ASCII kompatibilis karakterekből álló képek készítéséhez és megjelenítéséhez. A képeken a képi elemek a nyomtatható karakterek, amelyek a pointilizmushoz hasonló optikai effektust mutatnak.
A művészeti ág indulása arra vezethető vissza, hogy a korai nyomtatókkal nem lehetett grafikát nyomtatni, a monitorokon nem lehetett grafikát megjeleníteni. Cégek, programok bannerjeinek, logóinak készítésére pedig akkor is volt igény. Ezek mellett például prezentációkhoz, kapcsolási rajzokhoz is használták az ASCII művészetet, valamint természetesen a korai e-mailekben is. A grafikus kártyák megjelenése előtti időkben pedig a videójátékok „grafikája” is ezzel a technikával készült.
Most nézzünk meg néhány lehetőséget saját programmal való képkészítésre.

ASCII képek rajzolása programozási alapismeretek tanulásakor

Saját programmal már az alapok tanulásakor készíthetők ASCII képek a vezérlő szerkezetek megismerése kapcsán. Az alábbi képek bemutatják a lehetőségeket.

ASCII Art 2

További sok-sok kép található az alábbi weboldalakon:

A 2D grafikával való szövegrajzoláshoz használható BufferedImage osztály

A BufferedImage osztály a java.awt.image csomag része. Az Image osztály utódja. Hozzáférhető képadat-puffert tartalmaz, colorModel-ből és képadatok raster-éből áll. A raster sampleModel-jében a sávok számának és típusainak illeszkedniük kell a színt és átlátszó (alpha) komponenseket megadó colorModel által megkívánt számhoz és típusokhoz. A BufferedImage típusú objektumnak van bal felső koordinátája (0, 0), ezért a létrehozásához használt raster-nek kell legyen minX=0 és minY=0 értéke. A BufferedImage osztály a raster fetch és set metódusaira, valamint a colorModel színmódosítási módszereire támaszkodik.

Szöveg képként megjelenítése karakterekkel a konzolon

A kép méretét beállítjuk. A Graphics2D osztály drawString() metódusával String-et képként jeleníthetünk meg. Bár elég „munkás”, de Java-ban gyakran BufferedImage példány létrehozásával oldjuk ezt meg, és a Graphics példányt attól kérjük el. A Graphics2D osztály karakterfüzérek rajzolásakor egyszerű mátrixszerű technikát használ. A String-et kirajzoló mátrixrészek nullától különböző értéket kapnak. A megjelenítendő terület értékét egyszerű adatként, például int-ként kell megadnunk, nem RGB színértékekkel. Ehhez a képtípust int-módba állítottuk: BufferedImage.TYPE_INT_RGB. Az ASCII képek alapötlete az, hogy a képmátrix nem nulla indexeihez hozzárendelt értékeket a kívánt művészi karakterrel helyettesítjük. A nulla értékű mátrixindexeknek szóközt adunk. A nulla integer-módban -16777216-tal egyenlő. Ezután a Java 2D grafika haladó renderelő beállításainak használatához kasztoljuk a Graphics objektumot Graphics2D példánnyá. Majd beállítjuk a kívánt renderelési paramétereket, végül meghívjuk a drawString() metódust egy karakterlánccal.

Íme az elkészült szöveg/képernyőkép:

ASCII Art 3

A karakterek cserélgetésével a pozitív képből könnyen kaphatunk inverz/negatív képet is. A generált/renderelt képet fájlban is tárolhatjuk, például a javax.imageio.ImageIO osztállyal és adott a lehetőség a kép méretének megadására, a rajta megjelenő szöveg betűtípusának beállítására, háttérszín és szövegszín alkalmazására is.

A Java BufferedImage osztály néhány lehetőségének áttekintése után jó szórakozást kívánunk az ASCII képek létrehozásához, a lehetőségek további tanulmányozásához. Aki nem programból szeretne karakterekből/szövegekből felépülő képeket készíteni, használhat online alkalmazásokat is, például az Image to HTML/ASCII-t.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás, 2. rész alkalmához kötődik.