Dátumok csoportosítása

dátumintervallumok logó

dátumintervallumok logóEbben a Java projektben dátumok csoportosítását oldjuk meg, többféleképpen is. Mikor van erre szükség? Jelentés, kimutatás, riport, lista készítése során.

Példaként tekintsünk egy blogot. A blogban rendszeresen jelenik meg új tartalom (bejegyzés, poszt). Azért, hogy a blog hosszabb távon, sok bejegyzéssel is könnyen kereshető, átlátható, böngészhető legyen/maradjon a felhasználók, látogatók számára, célszerű:

  • taxonómia kialakítása. Ez kategóriákat és címkéket jelent. Ebből címkefelhő vagy szófelhő is készíthető, ahogyan erről blogoltunk már: Címkefelhő generálása.
  • marketing analitika használata. Ezek általában toplisták valamilyen könnyen hozzáférhető adat alapján. Például: látogatottság, népszerűség, eltöltött idő, hozzászólások száma, megosztások száma, egérmutató mozgása alapján hőtérkép. Ezek általában toplisták, amelyek eleje listázódik csökkenő sorrendben.
  • dátum szerint is csoportosítani a blog bejegyzéseit. Érdemes megjeleníteni a legújabbtól a régebbi felé haladó (retrospektív) listát, hierarchikus fa struktúrát, lenyíló panelt. Mindez kombinálható toplistával. A csoportosítás elvégezhető igény szerint tetszőlegesen, például évente, negyedévente, havonta.

Lássuk, hogyan lehet megvalósítani a dátumok csoportosítását Java programozás nyelven!

Milyen adatokra van szükség?

Egy megadott zárt dátumtartományban véletlenszerűen előállítunk néhány dátumot. Nem számít, hogy különböznek-e. A dátumokat tároló listát érdemes csökkenő sorrendben tárolni. Minden dátum múltbeli, így ez a sorrend a jelenhez legközelebbitől halad a legtávolabbi felé. Például a Java program ezekkel a dátumokkal dolgozik (lapozható):

Milyen eredményeket kaphatunk?

Az évenkénti csoportosítás így jelenik meg:

A havonkénti csoportosítás így jelenik meg (lapozható):

Természetesen blog esetén gyűjtőoldalra mutató hivatkozást kell tenni a megjelenő elemekre. Azok az évek és hónapok nem jelennek meg, ahol nincs dátum (blog bejegyzés).

Hogyan kapjuk meg az eredményeket?

Természetesen Java nyelven programozva készítünk megoldást, sőt többféle megoldást. Ezek szépen összevethetők és mindenki kiválaszthatja azt, amit szívesen használna. A dátumobjektumok tárolása generikus listában történik, aminek típusa LocalDate. A dátumok formátuma: DateTimeFormatter.ofPattern("yyyy.MM.dd.").

1. megoldás

Ez a hagyományosnak tekinthető megoldás. Végigjárja a dátumobjektumokat tartalmazó dateList dátumlista adatszerkezetet. Két egymásba ágyazott ciklussal csoportváltást valósít meg. Feltételezi – nem ellenőrzi -, hogy az adatok sorrendje megegyezik az eredmény kiírásának megfelelő sorrenddel. Amíg két egymást követő dátum GROUP_BY_FORMAT formátuma azonos, addig ugyanabba a csoportba tartoznak. A csoportváltáskor az eredmény TYPE_FORMAT formátumú. Közben a beépített megszámolás programozási tétel is működik.

A groupByDate1() függvény képes az évente és havonta csoportosítás megvalósítására. Mindez a paraméterezésén múlik. Évente csoportosít, ha így hívja meg a vezérlés:

Évenkénti csoportosítás során például a 2024.02.26. és a 2024.01.30. (dátumként, nem szövegként értelmezve) azért tartozik egy csoportba, mert a dátumobjektumoktól elkért év "2024" szövegként mindkettő esetében megegyezik.

A groupByDate1() függvény havonta csoportosít, ha így hívja meg a vezérlés:

Havonkénti csoportosítás során például a  2023.06.14. és a 2023.06.08. (szintén dátumként értelmezve) azért tartozik egy csoportba, mert mindkettő illeszkedik a "202306" szövegmintára.

2. megoldás

Ez a Stream API-t és funkcionális programozást használó, újabb megoldás. Ciklus helyett beépített műveletek vannak. A groupByDate2() függvény a dátumok évenkénti csoportosítását képes megoldani:

A groupByDate3() függvény a dátumok havonkénti csoportosítására készült. A YearMonth osztály beépített ( java.time csomag). A DateCount saját POJO. Konstruktora 4 paramétert kap: YearMonth key, Long value, DateTimeFormatter format és String groupText, valamint van két hasznos metódusa. Az egyik az örökölt és felüldefiniált toString() a formázott kiíráshoz, a másik pedig a Comparable interfésztől implementált compareTo() a sorrend kialakításához szükséges összehasonlításhoz.

A funkcionális programozáshoz kötődő lambda műveletekről többször is blogoltunk már, így azokat most nem részletezem. Helyette ajánlom a szakmai blog lambda kifejezés címkéjét.

Továbbfejlesztés

Érdemes átgondolni az 1. és 2. megoldás markáns különbözőségeit, illetve egymást kiegészítő gondolatmenetét. Zárjuk két ötlettel a továbbfejlesztésre vonatkozóan:

  • A 2. megoldás két függvénye megoldható egyetlen függvénnyel, amely hasonlóan paraméterezhető, mint az 1. megoldás függvénye. Ezáltal univerzális(abb)nak tekinthető megoldás is készülhetne. Aki kellően motivált és végiggyakorolja a fentieket, biztosan meg tudja oldani. Várjuk hozzászólásban, vagy az ILIAS-ban a megoldást!
  • A csoportosítás egyben hierarchiát jelent, amiből fa szerkezet építhető. A fa vizuális komponensen is megjeleníthető, ahogyan blogoltunk is róla: Fát építünk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam, a Java EE szoftverfejlesztő tanfolyam és a Java adatbázis-kezelő tanfolyam szakmai moduljának több alkalmához és az orientáló moduljának 1-4. óra: Programozási tételek alkalmához is kötődik. A Stream API-val és a lambda kifejezésekkel sokszor foglalkozunk.

A Pi grafikus ábrázolása

A nemzetközi Pi nap alkalmából (március 14) Java programmal grafikusan ábrázoljuk a π számjegyeit. Kiindulunk egy négyzet alakú grafikus felület középpontjából. Ezt tekintjük origónak. Sorra vesszük a π első néhány számjegyét: 100, 1000, 10000 paraméterezhető módon. Minden számjegyet egy rövid szakasszal ábrázolunk. A szakaszok egymást követik. Az előző végpontja megegyezik a következő kezdőpontjával. A rajzolás elejét és végét kör jelzi.

Tervezés

Az alábbi szabály alapján döntjük el, hogy a π előforduló számjegyei esetén melyik irányba és milyen színnel rajzolunk szakaszt:

A π első 100000 db számjegyét tároljuk egy szövegfájlban. Ömlesztve, sortörés, tizedesvessző nélkül. Így a π első 30 számjegye: 314159265358979323846264338327. A szövegfájl helyét a String PI_FILE  konstans jegyzi meg. A paraméternek megfelelően ebből vesszük az első N db számjegyet. Ezt a Java program beolvassa egy String típusú pi szövegobjektumba. A számjegyek összetartozó adatait egy Digit osztály rendeli egymáshoz. Ennek három adattagja van: melyik számjegy: int digit, melyik irányba kell szakaszt rajzolni java.awt.Point direction, milyen színnel kell szakaszt rajzolni java.awt.Color color. A tízféle színt egy konstans tömb tárolja: Color[] COLORS.

Részletek a Java forráskódból

A π tízféle számjegyéből az alábbi forráskód-részlettel létrejön egy tömb adatszerkezet: Digit[] digits. A koordináták/vektorok kiszámítása követi az analóg óra számlapjának 36 fokonként való felosztását.

A rajzoláshoz szükséges még néhány konstans: milyen vastag vonalat kell rajzolni: double PEN_RADIUS, mekkora átmérőjű kör jelzi a rajzolás kezdő- és végpontját: double POINT_RADIUS, milyen hosszú vonalat kell rajzolni: int LINE_LENGTH, a rajzterületet mekkorára kell méretezni/skálázni: int SCALE.

Mindezek alapján az alábbi forráskód-részlet vizualizálja a π számjegyeit:

Eredmény

Eredményül ezek az ábrák készíthetők el:

A rajzoláshoz felhasználtuk az StdDraw osztályt, amely ennek a tankönyvnek a példatárából származik: Robert Sedgewick, Kevin Wayne: Computer Science: An Interdisciplinary Approach, 1st edition, Princeton University, Addison-Wesley Professional, 2016, ISBN 978-0134076423. Az osztály metódusaival könnyen beállítható a nézőpont, a vízszintes/függőleges skála, a rajzoláshoz használt toll mérete/színe és a grafikai primitívek közül csak a kör és szakasz ábrázolása szükséges.

Korábban is megemlékeztünk néhány közelítő algoritmus – Viète-féle sor, Leibniz-féle sor, Wallis-formula, Csebisev-sor – implementálásával erről az ünnepnapról: Nemzetközi Pi nap. Ajánljuk korábbi blog bejegyzéseinket rajzolás, animáció, grafika címkékkel, illetve ASCII művészet Java-ban.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, 17-28. óra: Objektumorientált programozás, 29-36. óra: Grafikus felhasználói felület, 37-44. óra: Fájlkezelés alkalmaihoz kötődik.

Nemzeti pizza nap

Az USA-ban és még néhány országban február 9-én ünneplik a nemzeti pizza napot. Ehhez kötődően kreatív ötletekkel és persze finom pizzákkal vonzzák az éttermek a vendégeket.

Kreatív ötletekkel a mi oktatói csapatunk is rendelkezik. A nemzeti pizza nap inspirált bennünket az alábbi feladat megoldására.

Osszunk szét igazságosan 9 db egyforma pizzát 10 fő között!

Az igazságost úgy értelmezzük, hogy mindenkinek ugyanannyi (ugyanakkora szelet) pizza jut. Két megoldást mutatunk be grafikusan. Ötleteket adunk ahhoz, hogyan programozható le mindez Java nyelven: swing grafikus felületen, grafikai primitívekkel vagy ismert algoritmusokkal. Ábrákkal mutatjuk be a megoldásokat, színekkel kiemelve az azonos/különböző méretű pizzaszeleteket.

1. megoldás

Mind a 9 db pizzából vágjunk ki egytized méretű szeletet. Marad 9 db kilenctized méretű pizzaszelet és a 9 db egytizedből összeállítható a 10. főnek járó szintén kilenctized méretű pizzaszelet/adag.

2. megoldás

A 9 db pizzából 5 db pizzát vágjunk ketté. Keletkezik 10 db fél pizza. A maradék 4 db pizzát harmadoljunk fel. Keletkezik 12 db egyharmad pizza. A keletkező 2 db egyharmad pizzát osszuk fel 5-5 részre. Keletkezik 10 db egytizenötöd méretű pizzaszelet. Az egyharmad ötödrésze adja az egytizenötöd részt. A 10 főnek járó adaghoz rakjuk össze a 30 db részből a különbözőket: egy adag kilenctized, ami egy fél és egy harmad és egy tizenötöd részből áll össze. Másképpen: 9/10 = 27/30 = 15/30 + 10/30 + 2/30.

Ötletek a Java nyelvű megvalósításhoz

  • A JFrame osztályból származtatott ablak utódosztály tartalompaneljére ráhelyezhető egy öröklődés útján testre szabott JPanel utódosztályból létrehozott objektum. Ennek van grafikus vászna ( Graphics objektum), amely saját koordináta-rendszerrel és pixelszintű hozzáféréssel rendelkezik. Rendelkezésre áll számos grafikai primitív rajzolására használható metódus, például vonal/szakasz, téglalap, ellipszis. A grafikai primitíveknek rajzolható adott színű körvonala és lehetnek adott színnel kitöltöttek is. Például: drawArc(x, y, width, height, startAngle, arcAngle), vagy az azonos paraméterezésű fillArc(...) metódus. A két szög értelmezése: a startAngle az analóg órán a 3 óra irányába néz, valamint az arcAngle pozitív szög fokban megadva az óramutató járásával ellenkező irányba mutat.
  • A beépített grafikus primitívek helyett használhatunk klasszikus algoritmusokat is. Például a Bresenham vonalrajzoló algoritmus, vagy ennek általánosítása a Bresenham körrajzoló (felezőpont) algoritmus. Ezekhez hasznos némi koordináta-geometria és többféle koordináta-rendszer ismerete.

Ötletek továbbfejlesztéshez

  • Megpróbálhatjuk általánosítani a problémát: osszunk szét igazságosan n db egyforma pizzát n+1 fő között!
  • A statikus képek előállítását követően időzítéssel ellátott animációt is készíthetünk, amely megfelelően mozgatja, forgatja a pizzaszeleteket. Így fázisonként megmutathatók a feladat megoldásának lépései. Ehhez többrétegű vászontechnika szükséges, amelyen könnyen mozgatható a nézőhöz közelebbi réteg úgy, hogy a háttér nem változik meg.
  • A saját rajzolt elemek időzítővel – javax.swing.Timer – történő mozgatására példáink java.swing-ben: Hóesés szimuláció és Naprendszer szimuláció – megvalósítás Java nyelven.
  • A saját rajzolt elemek kézi – eseménykezelővel megvalósított – mozgatásához felhasználható példánk JavaFX-ben: Kígyókocka grafikus felületen.
  • A fázisokból lépésenként vezérelhetően felépülő ábrák elkészítéséhez példáink: Fibonacci-spirál és Koch-görbe rajzolása.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat – a matematikai háttértől eltekintve – a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, valamint a 29-36. Grafikus felhasználói felület alkalmaihoz kötődik.

Rácsrejtjelezés

Időnként készítünk oktatóprogramokat is tanfolyamainkon. Most az volt a cél, hogy kódolás/dekódolás szakterület egyik ismert betűkeveréses algoritmusának működését mutassa be lépésről-lépésre az oktatóprogram. A rácsrejtjelezést választottuk.

Az elkészült program Java swing-es felületű és Windows Classic look-and-feel bőrrel így néz ki működés közben:

A rácsrejtjelezés a képernyőképen látható 4×4-es Kódrács használatán alapul.

A titkosítandó szöveget karakterenként beleírjuk az aktuális kódrácsba soronként lefelé, azon belül balról jobbra haladva. Ha a négy pozíció betelt, akkor el kell fordítani a kódrácsot az óramutató járásával megegyező irányban 90 fokkal. Ha a szöveg hosszabb 16 karakternél, akkor elölről kell kezdeni. Ha készen vagyunk, akkor soronként haladva leírjuk egymás után a kódrácsban található karaktereket.

A megfejtéshez ismernünk kell a titkosított karaktersorozaton kívül a felhasznált kódrácsot is. A karaktersorozatot soronként lefelé haladva beírjuk a kódrácsba, az ismert kódrácsot ráhelyezve soronként lefelé, azon belül balról jobbra haladva kiolvashatjuk a megfejtést. Természetesen a kódrácsot most is forgatni kell minden negyedik karakter után.

Megfigyelhető, hogy bármely karaktert tudunk titkosítani és megfejteni. Ezért a rácsrejtjelezés ebből a szempontból univerzális módszer.

A kódrács ismerete nélkül a titkosított szöveg nem fejthető meg, tartalmára csak nehézkes következtetést adhatunk. Például, ha tudjuk, hogy milyen nyelvű a titkosított szöveg, akkor támpontot adhat a megfejtéséhez a nyelv ábécéjében előforduló betűk ismert gyakorisága.

A képernyőkép éppen a megfejtés egyik pillanatában készült. A feladó továbbította a titkosított szöveget és a kódrácsot a címzettnek, aki elkezdte annak megfejtését. A negyedik karakter a b volt, utoljára erre kattintott a (4;4) pozícióban. Ezt követte egy rácsforgatás, amelyhez tartozik egy ablak, amely megjeleníti a „Rácsforgatás következik.” szöveget. Ezután a kódrács elfordult, és a következő cella a második sor első cellája lesz. Ha hibás cellára, pozícióra kattintunk, akkor a következő hibaüzeneteket kaphatjuk: „Hibáztál! Folytathatod a titkosítást.” vagy „Hibáztál! Folytathatod a megfejtést.” Ha befejeztük a titkosítást, vagy a megfejtést, akkor a következő üzeneteket kaphatjuk: „A kódolás sikerült.” vagy „A megfejtés sikerült.”

A program tartalmaz egy gyakorlást támogatandó szövegkészletet. Ennek minden eleme 16 hosszúságú, az egyszerűség kedvéért – így nem kell véletlenszerű karakterekkel feltölteni a rács kimaradt celláit, illetve nem kell 16-os csoportokkal foglalkozni.

A Titkosítás és megfejtés fülön látható egy véletlenszerűen kiválasztott szöveg, amelyet karakterenként kódolni lehet a kódrács megfelelő cellájára kattintva. Ha kész, a Továbbítás gombbal a feladó elküldi a címzettnek a titkosított karaktersorozatot, aki hasonlóan megfejti. „Útközben” megfigyelhető, hogy éppen hányadik elforgatásnál tartunk és természetesen megjelenik az aktuális ráccsal titkosított szöveg is.

Az űrlapon lévő Kódrács csoportablak az aktuálisan, véletlenszerűen legenerált kódrácson kívül a kiválasztott cellák pozícióit is tartalmazza. Az (1;1) pozícióban a bal felső cella található. A kódrács a Másik nyomógombbal véletlenszerűen újragenerálható. Ennek megvalósításakor több probléma, ötlet is felmerülhet. Például használható visszalépéses keresés algoritmus.

Most nem specifikáljuk részletesebben, például objektumorientált tervezés, eseménykezelés, háttérbeli objektumok vagy GUI komponensek működésének/vezérlésének szintjén. Aki kedvet kapott és úgy érzi, hogy meg tudja ugrani ezt a kihívást, akkor bátran elkészítheti. Hajrá! Mivel oktatóprogram, szükséges hozzá Leírás és Teszt is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb oktatóprogramot tervezni, kódolni, tesztelni.

Kép élesítése effektus működése

Ismert számos képfeldolgozó, képjavító effektus. Az egyszerűbb effektusok elérhetők ingyenes web- és mobil alkalmazásokban, PowerPointban. Az összetettebb (művészi) effektusokhoz, szűrőkhöz már érdemes professzionális eszközt használni, ilyen például az Adobe Photoshop. Ezek a belépő szint képeffektusai kulcsszavakban: élesítés (sharpen), homályosítás (blur), elmosódás (gaussian blur), folyadékszerű rajz (liquid), olajfestmény (oil painting), öregítés (sepia), szürkeskála (grayscale).

Lássuk, hogyan valósítható meg Java programozási nyelven a kép élesítése!

A kép adatszerkezete

Adott egy képfájl. Formátuma a tipikus, feldolgozhatók (JPG, GIF, PNG, WebP) egyike. Ezek rasztergrafikus képformátumok. Lekérdezhető a dimenziója: ez képpontban (pixelben) jelenti a kép szélességét (width) és a kép magasságát (height). A vászontechnika meghatározza a kép origóját (0, 0) és a képpontok kétdimenziós koordinátapárját. A kép origója a bal felső sarokban van. A kép oszlopai (column) jobbra haladva növekvő módon, a kép sorai (row) lefelé haladva növekvő módon számozottak. Egy pixel koordinátapárja (c, r) alakban írható le. Minden pixel három szín kombinációjaként áll elő (r, g, b). Másképpen: a piros, zöld és kék összetevők aránya alapján meghatározott. A tipikus színmélység alapján a színek külön-külön 256-félék lehetnek, és ezeket 0-tól 255-ig egész szám képviseli. A 0 az adott szín hiányát, a 255 a szín teljes intenzitását jelenti.

A kép élesítéséhez használható szűrőmátrixok

A kép élesítése során szűrőt alkalmazunk a kép belső pixeleire. A kép 4 szélén lévő pixeleket nem változtatjuk. Többféle szűrő közül választhatunk, íme két példa:

A három színösszetevőre külön-külön kell alkalmazni a szűrőt. Az aktuális pixel – amire alkalmazzuk a szűrőt – a 3×3-as mátrix középső eleméhez igazítva szorzóértékeket tartalmaz. A konkrét eset: az a mátrix esetén az 5 érték a 2. sor 2. oszlopában helyezkedik el; ennek a közvetlen szomszédos pixeleire a -1 értékek, átlós szomszédaira pedig a 0 értékek vonatkoznak. Eredményül a szűrt pixel színeit kapjuk meg külön-külön. Ha a kapott értékek kisebbek 0-nál, akkor nullázzuk őket. Ha a kapott értékek nagyobbak 255-nél, akkor beállítjuk azokat 255-re. Az a szűrőmátrix kevésbé élesít, a b szűrőmátrix erősebben élesít.

Természetesen sok más képélességhez köthető szűrő is van még. Olyanok is vannak, ahol nem csak a közvetlen szomszédos pixeleket veszi figyelembe az algoritmus. További kulcsszavak a témához kötődően: digitális képfeldolgozás, lokális operátor, korreláció, konvolúció, átlagszűrő, mediánszűrő, zajszűrő, Laplace-szűrő.

A kép élesítését megvalósító Java forráskód-részlet

A fenti a mátrixot a SHARP_FILTER konstans kétdimenziós tömb tárolja. A paraméterként átvett BufferedImage típusú img1 objektum kép pixeleinek végigjárását ütközőként segíti a w szélesség és h magasság. A data egydimenziós tömb sorfolytonosan tárolja a kép pixeleit. Az if elágazó utasítás igaz ága kezeli a kép 4 szélét (változatlanul hagyott másolt színek). Az if hamis ága a belső pixelekre alkalmazza a szűrőmátrixot. A red, green, blue változók tartalmazzák az aktuális pixel színeit, amelyekbe az eredeti pixelre alkalmazott szűrő által szorzott értékek kerülnek, „belekényszerítve” a 0-255 zárt intervallumba. Végül az eredményül visszaadott img2 kép pixelei kerülnek beállításra. Az alábbi sharpenEffect() függvény mindezt megoldja az alábbiak szerint:

A metódus meghívása a fájlkezelést is tartalmazó vezérlőmetódusban például így történhet:

Az eredeti és élesített képek összehasonlítása

A bal oldalon az eredeti kép, a jobb oldalon az a mátrixszal élesített kép látható:

A bal oldalon az eredeti kép, a jobb oldalon a b mátrixszal élesített kép látható:

A látvány alapján fontos kiemelni, hogy másképpen is lehet összehasonlítást végezni. Például: színtérkép, színmélység, színösszetevők aránya (hisztogram).

Ötletek továbbfejlesztésre

  • Konzolos program átvehetné parancssori paraméterként a szűrőmátrixot, vagy annak nevét, kódját, egyes értékeit.
  • Grafikus felületű programban vízszinten JScrollBar  GUI komponens(ek) segítségével paraméterezhető, kigörgethető lehetne a szűrőmátrix szélsőértéke(i).
  • A fenti effektek a kép összes pixelét érintik. GUI felületen megoldható az is, hogy ki tudjuk jelölni a kép egy-egy részét, amire alkalmazni szeretnénk az effektek. Ez a kijelölés többféle lehet, például téglalap alakú, szabálytalan, átlátszó, adott vagy adotthoz hasonló árnyalatú színű, vagy valaminek a körvonala.
  • Egy mappában lévő összes képre alkalmazható effekt, előnézettel, képfájlonként megerősítéssel, jóváhagyással, csoportos kijelöléssel, szűrővel.
  • Szürkeskála effekt megvalósítása és tesztelése az alábbi forráskód-részlettel:
  • Homályosítás effekt megvalósítás és tesztelése a 4 élszomszéd színeinek átlagolásával, így:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb GUI programot tervezni, kódolni, tesztelni, kiegészítve a 37-44. óra Fájlkezelés alkalmaihoz kötődő példaprogramokkal.