Doktoranduszok programoznak – újratöltve

it-tanfolyam.hu doktoranduszok programoznakSaját doktorandusz csoporttársaimmal én is többször beszélgettem már arról – ahogyan Sándor is tette 2018-ban –, hogyan tudnák/tudják használni a programozás eszköztárát, módszereit, lehetőségeit saját kutatási munkájukban, beépítve a kutatási folyamat egyes lépéseibe, illetve disszertációjuk elkészítésébe.

A 7 fős csoportban mindenkinek más az alapvégzettsége, így szoftverfejlesztéshez, programozáshoz közös szókincs és terminológia haladó szinten természetesen nincs, viszont közös bennünk, hogy mindannyian alkotunk különféle modelleket és elemzünk adatokat. A csoport teljesen inhomogén, több szempontból is: ki melyik évfolyamot végzi, hol tart a kutatómunkájában, vannak-e ipari kapcsolatai, nappali vagy levelező képzésben végzi tanulmányait és persze ki mikor ér rá.

Különféle modelleket alkotunk

  • a mérnökök, fizikusok, geográfusok, biológusok többféle kísérletet végeznek el, szimulációkat terveznek és futtatnak, mérőeszközöket és műszereket használnak,
  • az informatikusok különböző matematikai eszközöket alkalmazva objektumorientált – vagy másféle – modellezést végeznek, szoftvereket terveznek, javítanak, újraírnak.

Adatokat is elemzünk, ki-ki előképzettségének megfelelően

  • kérdőívező szoftverekből exportálva valamit,
  • Excel munkalapokon, függvényekkel, adatbázis-kezelő funkciókkal, kimutatásokkal (Pivot táblák),
  • különböző fájlformátumokkal (CSV, XML, JSON, egyedi) dolgozunk és konvertálunk A-ból B-be,
  • távoli adatbázisokhoz, felhőbeli adattárházakhoz csatlakozunk, lekérdezünk és kapunk valamilyen – többnyire szabványos – adathalmazt,
  • matematikai, statisztikai szoftvereket használunk, például: MATLAB, Derive, Maple, SPSS.

Az öt évvel ezelőtti tematikát újragondoltuk. Kérdőívben felmértük a csoporttársak koncepcionális és konkrét igényeit. Más doktori iskolák hallgatói közül is toboroztunk. Ehhez kötődően köszönjük a DOSZ segítségét. Ezek alapján összeállítottunk egy olyan 3 részből álló tematikát, ami mindannyiunk számára hasznos. A 72 óra három 24 órás modulból áll: Java programozás, MATLAB programrendszer, mesterséges intelligencia.

Java programozás modul

  • 1-6. óra: Objektumorientált modellezés, MVC rétegek, algoritmus- és eseményvezérelt programozás
  • 7-12. óra: Fájlkezelés és szövegfeldolgozás (XLS, CSV, XML, JSON formátumú adatok írása, olvasása, feldolgozása), helyi és távoli adatforrásból
  • 13-18. óra: Adatbázis-kezelés JDBC alapon (SQL parancsok, CRUD műveletek, hierarchikus lekérdezések), helyi és távoli adatforrásból, natív módon és készen kapott API-kkal
  • 19-24. óra: Komplex adatfeldolgozási feladatok megoldása programozási tételek használatával, egyszerű statisztikai funkciók implementálásával

MATLAB programrendszer modul

  • 1-6. óra: Bevezetés az MATLAB nyelvbe (R2012 vs. R2022), utasításkészlet, vektorok, mátrixok, szkriptek, függvények, grafika
  • 7-12. óra: Szimulációk tervezése és készítése, numerikus módszerek áttekintése, algoritmizálása, tesztelés, analitikus megoldás, egyenletek megoldása
  • 13-18. óra: Adatok importálása helyi és távoli adatforrásból is, fájlkezelés: szövegfájlok, Excel-fájlok, import, feldolgozás, export, statisztikai alapok
  • 19-24. óra: Statisztikai próbák (illeszkedés- és függetlenség vizsgálata), hisztogramok készítése, differenciálegyenletek megoldása

Mesterséges intelligencia modul

  • 1-6. óra: Klasszikus és újabb megközelítések, alap AI funkcionalitás, megerősítéses és gépi tanulás lehetőségei és korlátai, OpenAI GPT nyelvi modell
  • 7-12. óra: Általános csevegés lehetőségei, korlátai, hasznos tanácsok; csevegés fájlok (szöveg, multimédia) tartalmáról; generatív AI funkciói; kép, ábra, grafikon, térkép, hang, animáció, videó generálása és ezek tömeges feldolgozása; programozási tételek alkalmazása multimédia analitikával együtt
  • 13-18. óra: Statisztikai adatok elemzése AI eszközökkel, automatikus tételbizonyítás AI eszközökkel, gráfelméleti kérdések kontra AI, hatékonysághoz kötődő kérdések AI eszközök esetén
  • 19-24. óra: Objektum- és aspektusorientált tervezés AI eszközökkel, kutatómunkát támogató AI eszközök

Mivel mindenki doktorandusz a csoportban, így a különböző MSc-s alapvégzettsége ellenére mindannyiunknak vannak strukturális programozáshoz kötődő alapismeretei, valamint adatok elemzéséhez szükséges elméleti matematikai/statisztikai alapjai.

A csoport órái szeptembertől decemberig, szombatonként zajlottak. Sándor tartotta a 24 órás Java programozás modult. Ez nagyban lefedi a Java SE szoftverfejlesztő tanfolyamunk tematikáját és kapcsolódik a Java EE szoftverfejlesztő tanfolyamunk és a Java adatbázis-kezelő tanfolyamunk tematikájához is. Én tartottam a 24 órás MATLAB programrendszer modult. Ketten közösen tartottuk a 24 órás Mesterséges intelligencia modult. Igazán tartalmas őszi időszakot jelentett számunkra ez a 12 szombat. Mindenki elvitte, amit beletett.

A koncepciót once-in-a-lifetime jelleggel dolgoztuk ki 🙂 (újratöltve) azzal a fő szándékkal, hogy hatékonyabban működjünk együtt a jövőben. A visszajelzések alapján bátran állíthatom, hogy ez gördülékenyen fog menni. Egyben köszönöm mindenkinek az aktív, konstruktív részvételt.


Ajánljuk a Java EE szoftverfejlesztő tanfolyam kategóriából

Szólj hozzá!