Tankocka – Párosítós játék: programozás Java nyelven

Ez a Tankockák blog bejegyzés sorozatunk első része. A feladatban meg kell találni a 15 db összetartozó párt a játékban. Ez a témakör mindhárom tanfolyamunkhoz kötődik: Java SE szoftverfejlesztő tanfolyam, Java EE szoftverfejlesztő tanfolyam, Java adatbázis-kezelő tanfolyam.

Át kell gondolni, hogy mi lehet a kapcsolat a párok elemei között. Közös jellemzőt/tulajdonságot kell találni. Észre kell venni az összefüggést. Persze nem árt, ha minél kevesebb lépésbe kerül a játék. 😉 Hajrá!

Rácsrejtjelezés

Időnként készítünk oktatóprogramokat is tanfolyamainkon. Most az volt a cél, hogy kódolás/dekódolás szakterület egyik ismert betűkeveréses algoritmusának működését mutassa be lépésről-lépésre az oktatóprogram. A rácsrejtjelezést választottuk.

Az elkészült program Java swing-es felületű és Windows Classic look-and-feel bőrrel így néz ki működés közben:

A rácsrejtjelezés a képernyőképen látható 4×4-es Kódrács használatán alapul.

A titkosítandó szöveget karakterenként beleírjuk az aktuális kódrácsba soronként lefelé, azon belül balról jobbra haladva. Ha a négy pozíció betelt, akkor el kell fordítani a kódrácsot az óramutató járásával megegyező irányban 90 fokkal. Ha a szöveg hosszabb 16 karakternél, akkor elölről kell kezdeni. Ha készen vagyunk, akkor soronként haladva leírjuk egymás után a kódrácsban található karaktereket.

A megfejtéshez ismernünk kell a titkosított karaktersorozaton kívül a felhasznált kódrácsot is. A karaktersorozatot soronként lefelé haladva beírjuk a kódrácsba, az ismert kódrácsot ráhelyezve soronként lefelé, azon belül balról jobbra haladva kiolvashatjuk a megfejtést. Természetesen a kódrácsot most is forgatni kell minden negyedik karakter után.

Megfigyelhető, hogy bármely karaktert tudunk titkosítani és megfejteni. Ezért a rácsrejtjelezés ebből a szempontból univerzális módszer.

A kódrács ismerete nélkül a titkosított szöveg nem fejthető meg, tartalmára csak nehézkes következtetést adhatunk. Például, ha tudjuk, hogy milyen nyelvű a titkosított szöveg, akkor támpontot adhat a megfejtéséhez a nyelv ábécéjében előforduló betűk ismert gyakorisága.

A képernyőkép éppen a megfejtés egyik pillanatában készült. A feladó továbbította a titkosított szöveget és a kódrácsot a címzettnek, aki elkezdte annak megfejtését. A negyedik karakter a b volt, utoljára erre kattintott a (4;4) pozícióban. Ezt követte egy rácsforgatás, amelyhez tartozik egy ablak, amely megjeleníti a „Rácsforgatás következik.” szöveget. Ezután a kódrács elfordult, és a következő cella a második sor első cellája lesz. Ha hibás cellára, pozícióra kattintunk, akkor a következő hibaüzeneteket kaphatjuk: „Hibáztál! Folytathatod a titkosítást.” vagy „Hibáztál! Folytathatod a megfejtést.” Ha befejeztük a titkosítást, vagy a megfejtést, akkor a következő üzeneteket kaphatjuk: „A kódolás sikerült.” vagy „A megfejtés sikerült.”

A program tartalmaz egy gyakorlást támogatandó szövegkészletet. Ennek minden eleme 16 hosszúságú, az egyszerűség kedvéért – így nem kell véletlenszerű karakterekkel feltölteni a rács kimaradt celláit, illetve nem kell 16-os csoportokkal foglalkozni.

A Titkosítás és megfejtés fülön látható egy véletlenszerűen kiválasztott szöveg, amelyet karakterenként kódolni lehet a kódrács megfelelő cellájára kattintva. Ha kész, a Továbbítás gombbal a feladó elküldi a címzettnek a titkosított karaktersorozatot, aki hasonlóan megfejti. „Útközben” megfigyelhető, hogy éppen hányadik elforgatásnál tartunk és természetesen megjelenik az aktuális ráccsal titkosított szöveg is.

Az űrlapon lévő Kódrács csoportablak az aktuálisan, véletlenszerűen legenerált kódrácson kívül a kiválasztott cellák pozícióit is tartalmazza. Az (1;1) pozícióban a bal felső cella található. A kódrács a Másik nyomógombbal véletlenszerűen újragenerálható. Ennek megvalósításakor több probléma, ötlet is felmerülhet. Például használható visszalépéses keresés algoritmus.

Most nem specifikáljuk részletesebben, például objektumorientált tervezés, eseménykezelés, háttérbeli objektumok vagy GUI komponensek működésének/vezérlésének szintjén. Aki kedvet kapott és úgy érzi, hogy meg tudja ugrani ezt a kihívást, akkor bátran elkészítheti. Hajrá! Mivel oktatóprogram, szükséges hozzá Leírás és Teszt is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb oktatóprogramot tervezni, kódolni, tesztelni.

Skandináv lottó demóprogram

Skandináv lottó (heteslottó) demóprogramot tervezünk és írunk meg Java nyelven. Lépésenként mutatja meg, hogy mi történik a háttérben: hogyan állítja elő véletlenszerűen a lottószelvényt.

Az emlékezet egy logikai tömb. Ebben 36 elem van. A nulladik elem nem számít, és legyen a többi elem (1-35-ig indexelve) kezdetben mind hamis. A cél: legyen a tömbben pontosan 7 db igaz érték. Másképpen: a logikai tömb a lottószelvényen megjátszható számok kiválasztottságát jelöli, igen vagy nem. A heteslottó-szelvény 7 db 1 és 35 közötti különböző egész számból áll.

Mindig 1 és 35 közötti egész véletlenszámot tippelünk. Kezdetben jóSzámDb=0. Az első tipp biztosan jó és jóSzámDb=1. A többi tipp esetén vizsgálni kell, hogy már kiválasztott-e. Ha igen, akkor nincs teendőnk. Ha nem, akkor meg kell jegyezni (kiválasztottá kell tenni, azaz igazzá kell állítani a logikai tömbben) és a jóSzámDb++ (növelhető). Mindezt ciklusban ismételjük, amíg a jóSzámDb<7 feltétel teljesül (másképpen: amíg nincs elegendő kiválasztott szám a szelvényen). Mindez biztosítja az egyediséget, különbözőséget. Ha jóSzámDb==7, akkor kiírjuk a lottószelvényre kerülő számokat az alapján, hol (melyik indexen) van a logikai tömbben igaz érték.

Tekintsük át az alkalmazott módszer hátrányait és előnyeit. Hátrány, hogy 36 logikai érték szükséges ahhoz, hogy 7 különböző számot előállítsunk. Előny, hogy egyszerű az algoritmus (nem kell keresés és megszámolás programozási tétel) és nincs szükség rendezésre sem, mert a szakterületre jellemző „emelkedő számsorrend” a logikai tömb bejárásával önkéntelenül is adódik. Hangsúlyozzuk, hogy ez csupán egyetlen módszer a nagyon sok izgalmas közül, amikkel generálható egy véletlenszerű lottószelvény.

A megvalósítás, Java forráskód nagy egyszerű. Íme egy függvény, amely visszaadja azt kiválasztottságot jelölő logikai tömböt, amiből megfelelően indexelve kiíratható a véletlenszerűen generált lottószelvény:

Egy demóprogram, szimulációs program, oktatóprogram esetén nem is a konkrét feladat megoldása a cél/probléma. Sokkal inkább a lépésenkénti bemutatás, sok-sok konzolos kiírással vagy grafikus szemléltetéssel. Sokszor időzítővel késleltetjük, lassítjuk, gyorsítjuk a folyamatot, de előfordul az is, hogy rengetegszer megismételjük a tevékenységet és a kapott adatokat elemezzük, következtetünk belőlük. Most például a ciklust ki kell cserélni olyan léptetésre, ami a felhasználó kattintásához kötődik. Ha kéri a következő tippet a lottószelvényre, akkor megkapja. Ha nem kattint, akkor nem kapja meg. Az is egy csalás/lehetőség lenne, hogy a háttérben nem is logikai tömb adatszerkezet van, csupán a vizualizáció miatt tűnik annak.

Az elkészült demóprogram megvalósítja a fenti algoritmust. Az alábbi képernyőképeken végiglapozható a demóprogram működése. Nem is az algoritmus megvalósítása a kihívás és a cél, hanem a folyamat lépésenkénti megjelenítése. Java swing grafikus felület készült el.

 

A demóprogram Start állapottal indul. Olyan a lépésenként tesztesetek sorozata, hogy a lottószelvény nem sikerül rögtön elsőre. Az egyik szám már előfordult korábban. A demóprogram Stop állapottal ér véget. A demóprogram pénztárszalagszerűen időnként jelzi, hol tart éppen. A demóprogram képes egymás után több lottószelvényt is előállítani és az emlékezete egyetlen szelvényre korlátozódik.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni. A Java EE szoftverfejlesztő tanfolyamunkon, a szakmai modul 33-40. óra Java Server Pages alkalmain már a program böngészőben futó változatát is el tudjuk készíteni.

Keresztrejtvény készítése

Támogatjuk a keresztrejtvények készítését Java programmal. A program grafikus felülete eszköztárból és a keresztrejtvényből áll. Az elkészült programban 10×10-től 15×15-ig beállítható négyzetrács készíthető elő. A tiltott négyzetek száma 15-től 30-ig beállítható. Mivel a tiltott négyzetek helyzete véletlenszerű, így nem biztos, hogy az elsőre jó/szerencsés lesz, ezért újragenerálható a négyzetrács. A program a tipikus követelményeknek megfelelően sorfolytonosan sorszámozza a négyzetrács elemeit, ami alapján megadhatók hozzá a vízszintes és függőleges feladványok. A program az elfogadott négyzetrácsot többféle képformátumban is el tudja menteni.

Az elkészült Java program grafikus felülete

Objektumorientált tervezés

A keresztrejtvény ábrája egy négyzetrácsból áll, amelyben rejtvénymezők helyezkednek el. A rejtvénymezőnek megfelel egy örökítéssel felüldefiniált címkekomponens. A rejtvénymezőt körülveszi egy szegély/keret, tiltott vagy sem állapotától függően fekete vagy fehér a háttérszíne, valamint van a bal felső sarkához igazított kis méretű betűvel nem kötelezően megjeleníthető sorszáma. A tiltott és sorszám tulajdonságait kell tudni beállítani és megkérdezni. Ez a feladatban a RejtvenyMezo POJO. A négyzetrács sorai és oszlopai azonos méretűek (pixelre és darabszámra egyaránt).

Algoritmus a keresztrejtvény sorszámozására

A rejtvénymezők kétdimenziós négyzetes mátrixban/tömbben helyezkednek el. A sorszámozáshoz hasznos, ha a négyzetrácsot körbeveszi egy tiltott rejtvénymezőkből álló keret. Először a rács sorain és oszlopain végighaladó egymásba ágyazott ciklusok létrehozzák a POJO-kat úgy, hogy a négyzetrács keretén lévő rejtvénymezők tiltottak, a többi nem tiltott. Ezután véletlenszerűen ki kell választani – a még nem tiltottak közül – a szükséges mennyiségű tiltott rejtvénymezőt. Ezután sorfolytonosan sorszámozni kell azokat a rejtvénymezőket, ahol vízszintes vagy függőleges feladvány kezdődik. Ehhez is két egymásba ágyazott ciklus kell, amelyben minden még nem tiltott rejtvénymező egyre növekvő sorszámot kap, ha tőle balra tiltott és tőle jobbra nem tiltott rejtvénymező helyezkedik el, de akkor is, ha felette tiltott és alatta nem tiltott rejtvénymező található.

A keresztrejtvényt sorszámozó algoritmus Java megvalósítása

Továbbfejlesztési lehetőségek

  • A feladványok listázhatók és kideríthető a hosszuk.
  • A tiltott rejtvénymezők véletlenszerű elhelyezése helyett lehetne valamilyen szabály, stratégia az egymáshoz való helyzetükre, távolságukra, közvetlen szomszédságukra vonatkozóan. Figyelembe vehetnénk valamilyen szimmetriát is, mintákat, alakzatokat is. Véletlenszerű elhelyezésük nem biztos, hogy mindig jó/szerencsés: például a tiltott rejtvénymezők körbezárhatnak egy nem tiltottat, hosszabb feladványokat nehezebb találni…
  • A Java SE szoftverfejlesztő tanfolyam tematikájához kötődően többféle szótárból, fájlformátumból betölthetünk a feladványokhoz használható, például 7 betűs országnevek, 2 betűs kémiai elemek, női/férfi keresztnevek, autójelek, pénznemek, szinonimák…
  • A Java EE szoftverfejlesztő tanfolyam tematikához kötődően többféle webes adatforrásból, Wikipédiából, szótárból, API hívásokkal letölthetünk a feladványokhoz használható listákat, meghatározásokat, kulcs-érték párokat. A swing-es felületet lecserélhetjük böngészőben futó webes GUI-ra is.
  • A Java adatbázis-kezelő tanfolyam tematikájához kötődően a fentiek kiegészítéseként tervezhetünk és építhetünk helyben tárolt tudástárat, adatbázist, amiből hatékonyan lekérdezve adhatunk feladványokat a keresztrejtvényhez.
  • Miután a fentiek szerint valahogyan – tipikusan visszalépéses algoritmussal – meghatároztuk a feladványokat, a keresztrejtvényből menthetünk kitöltött változatot is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Fibonacci-spirál

Fibonacci nap

Fibonacci nap 2018A Fibonacci-spirál a népszerű Fibonacci-sorozat elemei által meghatározott oldalhosszúságú négyzetekbe rajzolt maximális sugarú negyedkörök megfelelően összeillesztett darabjaiból/sorozatából áll. Sokszor hasonlítják az arany spirálhoz (jól közelíti), amely az aranymetszéshez kötődik.

A Fibonacci-spirál

Vegyük a Fibonacci-sorozat első 10 elemét! Rajzoljuk egymás mellé az alábbi elrendezésben belülről kifelé haladva az 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 oldalhosszúságú négyzeteket (az alábbi ábrán vékony sárgával jelölve). Piros színnel rajzoljuk bele a négyzetekbe a négyzet oldalhosszával megegyező sugarú negyedköröket. A negyedkörök megfelelő elrendezésben folytonos görbét alkotnak, és ezt nevezzük Fibonacci-spirálnak (az alábbi ábrán vastag pirossal jelölve).

Fibonacci-spirál 1

A rajzolás bármeddig folytatható, mert a sorozat végtelen, a négyzetek illeszkednek és az ábra rekurzív, önhasonló. Az alábbi animáció mutatja, hogyan alakul a spirál a nézőpont közelítésével. A viselkedés távolítás során is azonos lenne.

Fibonacci-spirál 2

Korábban blogoltunk már a Fibonacci napról, amelyet minden évben november 23-án ünneplünk. A sorozat első néhány eleméből összeáll a 11.23. és értelmezhető dátumként. Most nem a sorozat elemeinek előállítására fókuszálunk, hanem arra, hogy ezekből felépítsük a Fibonacci-spirált.

Készítsünk Java programot!

Grafikus felületű Java programot készítünk, amely 21 animációs fázisban mutatja be a Fibonacci-sorozat első 10 eleméből álló Fibonacci-spirál felépítését. A rajzolás fázisai:

  • Az 1. fázis a kiindulópontként tekinthető fehér, üres rajzlap. A rajzlap fekvő, mérete 890*550 pixel, amelyre éppen elfér a 10 negyedkörből álló spirál.
  • A 2-11. fázisban megfelelő pozícióba/koordinátákra kerülnek fel az ábra vázát alkotó négyzetek, belülről kifelé haladva. A négyzetek oldalainak hosszúsága a sorozat elemeinek megfelelő. A szomszédos négyzetek különböző színekkel kitöltöttek és mindegyikben megjelenik a sorozat megfelelő eleme.
  • A 12-21. fázisban – szintén belülről kifelé haladva – a négyzetek törlődnek és helyükre a spirált alkotó negyedkörök kerülnek fekete színnel. A 21. fázist tekintjük végeredménynek.

A fázisok kézzel, nyilakkal jelölt (Első, Előző, Következő, Utolsó) vezérlő nyomógombokkal megjeleníthetők, illetve egyben, időzítve animációként is lejátszható a rajzolási folyamat. Az elkészült program működése megfigyelhető az ábrán:

Fibonacci-spirál Java program

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni.