Egy matematika érettségi feladat megoldása programozással 2024

érettségi logó

érettségi logóA 2024-es középszintű matematika érettségi feladatsorból az 12. feladata inspirált arra, hogy elkészítsem a grafikus ábrázolását Java nyelven. A korábbi Kígyókocka grafikus felületen esettanulmány kiváló alapot, „keretrendszert” adott a továbbfejlesztésre. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor letölthető az oktatas.hu-ról.

12. feladat

Egy piros, egy fekete és egy fehér szabályos dobókockával egyszerre dobunk. Határozza meg annak a valószínűségét, hogy a dobás eredménye három különböző szám lesz! Megoldását részletezze!

1. megoldás

A kedvező /összes eset száma ad választ a kérdésre. Az egymásba ágyazott ciklusok – i-j-k számhármasokként – előállítják az összes esetet. Ezek száma 216, rendre: 1-1-1, 1-1-2, …, 1-1-6, 1-2-1, …, 6-6-5, 6-6-6-ig. A összes eset között megtalálhatók a kedvező esetek. Ezek száma 120, rendre: 1-2-3, 1-2-4, 1-2-5, 1-2-6, 1-3-2, 1-3-4, 1-3-5, 1-3-6, 1-4-2, 1-4-3, 1-4-5, 1-4-6, 1-5-2, 1-5-3, 1-5-4, 1-5-6, 1-6-2, 1-6-3, 1-6-4, 1-6-5, 2-1-3, 2-1-4, 2-1-5, 2-1-6, 2-3-1, 2-3-4, 2-3-5, 2-3-6, 2-4-1, 2-4-3, 2-4-5, 2-4-6, 2-5-1, 2-5-3, 2-5-4, 2-5-6, 2-6-1, 2-6-3, 2-6-4, 2-6-5, 3-1-2, 3-1-4, 3-1-5, 3-1-6, 3-2-1, 3-2-4, 3-2-5, 3-2-6, 3-4-1, 3-4-2, 3-4-5, 3-4-6, 3-5-1, 3-5-2, 3-5-4, 3-5-6, 3-6-1, 3-6-2, 3-6-4, 3-6-5, 4-1-2, 4-1-3, 4-1-5, 4-1-6, 4-2-1, 4-2-3, 4-2-5, 4-2-6, 4-3-1, 4-3-2, 4-3-5, 4-3-6, 4-5-1, 4-5-2, 4-5-3, 4-5-6, 4-6-1, 4-6-2, 4-6-3, 4-6-5, 5-1-2, 5-1-3, 5-1-4, 5-1-6, 5-2-1, 5-2-3, 5-2-4, 5-2-6, 5-3-1, 5-3-2, 5-3-4, 5-3-6, 5-4-1, 5-4-2, 5-4-3, 5-4-6, 5-6-1, 5-6-2, 5-6-3, 5-6-4, 6-1-2, 6-1-3, 6-1-4, 6-1-5, 6-2-1, 6-2-3, 6-2-4, 6-2-5, 6-3-1, 6-3-2, 6-3-4, 6-3-5, 6-4-1, 6-4-2, 6-4-3, 6-4-5, 6-5-1, 6-5-2, 6-5-3, 6-5-4.

A megszámolás programozási tétel előállítja a szükséges változókat, amik hányadosa megadja a szükséges p valószínűséget és ezt a program ki is írja a konzolra: A keresett valószínűség: 0.5555555555555556. Az esetek/lehetőségek felsorolása egyben a megoldás részletezése. A megszámoláshoz használt sokféle feltétel természetesen átfogalmazható lenne. Az egyszerűsítés többféleképpen is elvégezhető, többek között a De Morgan-azonosságok alkalmazásával.

2. megoldás

A korábbi JavaFX alapon megvalósított program módosításával könnyen állítható a megoldás grafikus/vizuális reprezentációja. Íme egy képernyőkép az elkészült program felhasználói felületéről:

A 3 db dobókockával kapott számhármasok 3D-ben, térbeli pontként jelennek meg egy kockában. A nagy piros gömbök jelölik azt a 6 db esetet, amikor mindhárom kockadobás megegyezik. Ezek a kocka egyik testálójában találhatók. A közepes narancssárga gömbök jelölik azt a 90 db lehetőséget, amikor bármely (pontosan) két kockadobás megegyezik. Végül a kis szürke gömbök jelölik a megoldást. Ez a 120 db kimaradó eset, másképpen: amikor mindhárom kockadobás különbözik. Másféle lehetőség nincs és megvan a 216 esethez tartozó összes gömb.

A megoldás implementálása a korábbi programban szinte csak egy metódus frissítését, kiegészítését igényelte. Ez a korábbi tudatos, objektumorientált, MVC szerkezetnek köszönhető és egyben a forráskód újrafelhasználása is. A createCube() metódus az alábbiak valósítja meg a feladatot:

A belépési pont, a grafikus felület építése, a nyomógombok eseménykezelése, a geometriai transzformációk, és persze a 3D -> 2D leképezés a megjelenítés során megmaradt. A virtuális térben elhelyezett objektumok változtak (pozíció, nézőpont, anyagtulajdonság). További részletes magyarázat érhető el a Kígyókocka grafikus felületen esettanulmányban.

3. megoldás

Itt most csak ötletet szeretnék mutatni. A 2022-es 6. feladat 3-7. kombinatorikai megoldásai könnyen továbbfejleszthetők és sokféle hasznos apróság gyakorolható.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 9-12. óra: Metódusok, rekurzió, valamint 17-28. óra: Objektumorientált programozás alkalmaihoz kötődik.

A Pi grafikus ábrázolása

A nemzetközi Pi nap alkalmából (március 14) Java programmal grafikusan ábrázoljuk a π számjegyeit. Kiindulunk egy négyzet alakú grafikus felület középpontjából. Ezt tekintjük origónak. Sorra vesszük a π első néhány számjegyét: 100, 1000, 10000 paraméterezhető módon. Minden számjegyet egy rövid szakasszal ábrázolunk. A szakaszok egymást követik. Az előző végpontja megegyezik a következő kezdőpontjával. A rajzolás elejét és végét kör jelzi.

Tervezés

Az alábbi szabály alapján döntjük el, hogy a π előforduló számjegyei esetén melyik irányba és milyen színnel rajzolunk szakaszt:

A π első 100000 db számjegyét tároljuk egy szövegfájlban. Ömlesztve, sortörés, tizedesvessző nélkül. Így a π első 30 számjegye: 314159265358979323846264338327. A szövegfájl helyét a String PI_FILE  konstans jegyzi meg. A paraméternek megfelelően ebből vesszük az első N db számjegyet. Ezt a Java program beolvassa egy String típusú pi szövegobjektumba. A számjegyek összetartozó adatait egy Digit osztály rendeli egymáshoz. Ennek három adattagja van: melyik számjegy: int digit, melyik irányba kell szakaszt rajzolni java.awt.Point direction, milyen színnel kell szakaszt rajzolni java.awt.Color color. A tízféle színt egy konstans tömb tárolja: Color[] COLORS.

Részletek a Java forráskódból

A π tízféle számjegyéből az alábbi forráskód-részlettel létrejön egy tömb adatszerkezet: Digit[] digits. A koordináták/vektorok kiszámítása követi az analóg óra számlapjának 36 fokonként való felosztását.

A rajzoláshoz szükséges még néhány konstans: milyen vastag vonalat kell rajzolni: double PEN_RADIUS, mekkora átmérőjű kör jelzi a rajzolás kezdő- és végpontját: double POINT_RADIUS, milyen hosszú vonalat kell rajzolni: int LINE_LENGTH, a rajzterületet mekkorára kell méretezni/skálázni: int SCALE.

Mindezek alapján az alábbi forráskód-részlet vizualizálja a π számjegyeit:

Eredmény

Eredményül ezek az ábrák készíthetők el:

A rajzoláshoz felhasználtuk az StdDraw osztályt, amely ennek a tankönyvnek a példatárából származik: Robert Sedgewick, Kevin Wayne: Computer Science: An Interdisciplinary Approach, 1st edition, Princeton University, Addison-Wesley Professional, 2016, ISBN 978-0134076423. Az osztály metódusaival könnyen beállítható a nézőpont, a vízszintes/függőleges skála, a rajzoláshoz használt toll mérete/színe és a grafikai primitívek közül csak a kör és szakasz ábrázolása szükséges.

Korábban is megemlékeztünk néhány közelítő algoritmus – Viète-féle sor, Leibniz-féle sor, Wallis-formula, Csebisev-sor – implementálásával erről az ünnepnapról: Nemzetközi Pi nap. Ajánljuk korábbi blog bejegyzéseinket rajzolás, animáció, grafika címkékkel, illetve ASCII művészet Java-ban.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, 17-28. óra: Objektumorientált programozás, 29-36. óra: Grafikus felhasználói felület, 37-44. óra: Fájlkezelés alkalmaihoz kötődik.

Szívgörbe ábrázolása

Szívgörbét ábrázolunk Java programmal. A Valentin-nap inspirálta ezt a feladatot. Számos matematikai görbe ismert, amelyek szívformához (kardioid) hasonlítanak. Szükséges egy megfelelő paraméteres görbe. A függvény szív formájú ábrája/grafikonja és egyenletrendszere alapján is nagy a választék.

Ábrázoljuk ezt a paraméteres szívgörbét Java swing GUI felületen!

A szívgörbe ábrázolásához felhasználom az StdDraw osztályt, amely ennek a tankönyvnek a példatárából származik: Robert Sedgewick, Kevin Wayne: Computer Science: An Interdisciplinary Approach, 1st edition, Princeton University, Addison-Wesley Professional, 2016, ISBN 978-0134076423. Az osztály metódusaival könnyen beállítható a nézőpont, a vízszintes/függőleges skála, a rajzoláshoz használt toll mérete/színe és a grafikai primitívek közül csak a pont ábrázolása szükséges.

Négy megoldást mutatok. Mindegyik azonos szívgörbét rajzol a fenti egyenletrendszer alapján. Mindegyik metódus átveszi az N paramétert, amely az összetartozó x és y koordinátapárok számát jelenti. Az N db pont meghatározása/kiszámolása szükséges a szívgörbe ábrázolásához. A szívgörbe ábrázolása önálló ablakban – grafikus felhasználói felületen – jelenik meg. A feladat matematikai jellegéből adódik, hogy tipikus a t nevű ciklusváltozó használata. A metódusokat a vezérlés az 512 paraméterrel hívja meg.

1. megoldás

A heartCurveDraw1() metódus a kiszámolt x és y koordinátákat két párhuzamos, double típusú tömb adatszerkezetben tárolja. A két tömbbe összesen 2*N db double típusú szám kerül. Azonos index jelöli az összetartozó koordinátapárokat. Az egymást követő két ciklus közül az első előállítja az adatszerkezetet és a második megjeleníti a pontokat.

2. megoldás

A heartCurveDraw2() metódus a párhuzamos tömbök helyett adatszerkezetként egyetlen tömböt használ. A java.awt.geom csomag Point2D osztályú objektumai kerülnek a tömbbe. Mivel a Point2D absztrakt osztály, így a Double() osztálymetódusával (factory method) példányosítható úgy, hogy a szükséges koordinátapárokat megfelelően tudja tárolni. A tömbbe N db objektum kerül.

3. megoldás

A heartCurveDraw3() metódus nem használ tömb adatszerkezetet. Tehát nem emlékszik az összes pont koordinátájára. Ehelyett a ciklus röptében, egyesével létrehozza a pontobjektumokat és azonnal ki is rajzolja azokat (átmeneti az emlékezet).

4. megoldás

A heartCurveDraw4() metódus Stream API-t és lambda kifejezéseket használ. Az első N természetes számból készül egy sorozat, amihez röptében hozzákötődik a t-edik Point2D típusú objektum. Ezzel létrejön egy folyam adatszerkezet. Tehát van egy pillanat, amíg a program emlékszik az összes folyambeli pontobjektumra. Végül a folyam feldolgozása, bejárása során egyesével megszólítva a folyam objektumait, a pontok kirajzolódnak a vászonra.

A vezérlés

Az eredmény

A szívgörbe önálló – swing, grafikus felhasználói felület, GUI – ablakban így jelenik meg:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat – a matematikai háttértől eltekintve – a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, valamint a 29-36. Grafikus felhasználói felület alkalmaihoz kötődik.

A 2D szívforma egyenletrendszerét erről a weboldalról választottam: Heart Curve – from Wolfram MathWorld. Egy merész továbbfejlesztési ötlet: a haladóknak megtalálható a 3D szívforma ábrázolása is: Heart Surface – from Wolfram MathWorld.

Sándor is blogolt már a Valentin-nap témában: Rómeó és Júlia. Ebből kiderül, hogy vajon ki szereti jobban a másikat: Rómeó vagy Júlia.

Nemzeti pizza nap

Az USA-ban és még néhány országban február 9-én ünneplik a nemzeti pizza napot. Ehhez kötődően kreatív ötletekkel és persze finom pizzákkal vonzzák az éttermek a vendégeket.

Kreatív ötletekkel a mi oktatói csapatunk is rendelkezik. A nemzeti pizza nap inspirált bennünket az alábbi feladat megoldására.

Osszunk szét igazságosan 9 db egyforma pizzát 10 fő között!

Az igazságost úgy értelmezzük, hogy mindenkinek ugyanannyi (ugyanakkora szelet) pizza jut. Két megoldást mutatunk be grafikusan. Ötleteket adunk ahhoz, hogyan programozható le mindez Java nyelven: swing grafikus felületen, grafikai primitívekkel vagy ismert algoritmusokkal. Ábrákkal mutatjuk be a megoldásokat, színekkel kiemelve az azonos/különböző méretű pizzaszeleteket.

1. megoldás

Mind a 9 db pizzából vágjunk ki egytized méretű szeletet. Marad 9 db kilenctized méretű pizzaszelet és a 9 db egytizedből összeállítható a 10. főnek járó szintén kilenctized méretű pizzaszelet/adag.

2. megoldás

A 9 db pizzából 5 db pizzát vágjunk ketté. Keletkezik 10 db fél pizza. A maradék 4 db pizzát harmadoljunk fel. Keletkezik 12 db egyharmad pizza. A keletkező 2 db egyharmad pizzát osszuk fel 5-5 részre. Keletkezik 10 db egytizenötöd méretű pizzaszelet. Az egyharmad ötödrésze adja az egytizenötöd részt. A 10 főnek járó adaghoz rakjuk össze a 30 db részből a különbözőket: egy adag kilenctized, ami egy fél és egy harmad és egy tizenötöd részből áll össze. Másképpen: 9/10 = 27/30 = 15/30 + 10/30 + 2/30.

Ötletek a Java nyelvű megvalósításhoz

  • A JFrame osztályból származtatott ablak utódosztály tartalompaneljére ráhelyezhető egy öröklődés útján testre szabott JPanel utódosztályból létrehozott objektum. Ennek van grafikus vászna ( Graphics objektum), amely saját koordináta-rendszerrel és pixelszintű hozzáféréssel rendelkezik. Rendelkezésre áll számos grafikai primitív rajzolására használható metódus, például vonal/szakasz, téglalap, ellipszis. A grafikai primitíveknek rajzolható adott színű körvonala és lehetnek adott színnel kitöltöttek is. Például: drawArc(x, y, width, height, startAngle, arcAngle), vagy az azonos paraméterezésű fillArc(...) metódus. A két szög értelmezése: a startAngle az analóg órán a 3 óra irányába néz, valamint az arcAngle pozitív szög fokban megadva az óramutató járásával ellenkező irányba mutat.
  • A beépített grafikus primitívek helyett használhatunk klasszikus algoritmusokat is. Például a Bresenham vonalrajzoló algoritmus, vagy ennek általánosítása a Bresenham körrajzoló (felezőpont) algoritmus. Ezekhez hasznos némi koordináta-geometria és többféle koordináta-rendszer ismerete.

Ötletek továbbfejlesztéshez

  • Megpróbálhatjuk általánosítani a problémát: osszunk szét igazságosan n db egyforma pizzát n+1 fő között!
  • A statikus képek előállítását követően időzítéssel ellátott animációt is készíthetünk, amely megfelelően mozgatja, forgatja a pizzaszeleteket. Így fázisonként megmutathatók a feladat megoldásának lépései. Ehhez többrétegű vászontechnika szükséges, amelyen könnyen mozgatható a nézőhöz közelebbi réteg úgy, hogy a háttér nem változik meg.
  • A saját rajzolt elemek időzítővel – javax.swing.Timer – történő mozgatására példáink java.swing-ben: Hóesés szimuláció és Naprendszer szimuláció – megvalósítás Java nyelven.
  • A saját rajzolt elemek kézi – eseménykezelővel megvalósított – mozgatásához felhasználható példánk JavaFX-ben: Kígyókocka grafikus felületen.
  • A fázisokból lépésenként vezérelhetően felépülő ábrák elkészítéséhez példáink: Fibonacci-spirál és Koch-görbe rajzolása.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat – a matematikai háttértől eltekintve – a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, valamint a 29-36. Grafikus felhasználói felület alkalmaihoz kötődik.

Beszámoló: it-tanfolyam.hu STEM nyári tábor 2023

A STEM mozaikszó eléggé közismert: a tudományos-technológiai tudományágakat (természettudomány, technológia, mérnöki tudomány és matematika) foglalja egybe, interdiszciplináris megközelítésben. A STEM területén való elmélyedés során a hangsúly nem a mit tanulunk/tanítunk, hanem inkább a hogyan tanulunk/tanítunk. Nem azonnal ad kézzel fogható válaszokat, de kitartó próbálkozással – saját élménnyel – elérhető az eredmény.

Az it-tanfolyam.hu oktatói csapata 2023-ban először hirdetett STEM nyári tábort. Erről számolunk be röviden ebben a blog bejegyzésben. Tervezzük, hogy a jövőben rendszeresen fogunk szervezni STEM nyári tábort.

A STEM nyári tábor koncepciója

2023. nyarán 4 turnusban hirdettünk programozás fókuszú STEM nyári tábort:

  • 1. turnus: július 3-7-ig,
  • 2. turnus: július 10-14-ig,
  • 3. turnus: július 17-21-ig,
  • 4. turnus: július 24-28-ig.

Előzetes tudás- és igényfelmérést végeztünk, így alakítottunk ki 3 db csoportot, ezek: Java kezdő, Python kezdő, Python haladó. A kiinduló célcsoportot tanfolyamaink karrierváltó hallgatóinak gyermekei jelentették, akik mellé toboroztunk még. A korosztály a 16-20 éves diákok voltak a 11-14. évfolyamról. A 11-12. évfolyamosok közül sokan informatika, digitális kultúra érettségi előkészítő fakultációra jelentkeztek, jártak, járnak és ebből érettségiznek/érettségiztek. A már korábban érettségizett 13-14. évfolyamosok körülbelül fele az OKJ utód szakmajegyzékhez tartozó szakképzésben tanult.

Mindegyik turnus azonos tematikával valósult meg. Turnusonként 3 db párhuzamos, 10-12 fős csoportokat indítottunk. Voltak közös elméleti programok, szakmai kirándulás, illetve külön-külön Java és Python nyelven megvalósuló gyakorlati programok, valamint projektbemutatóra is sor került. Igyekeztünk érinteni sokféle STEM területet: fizika, kémia, biológia, csillagászat, térinformatika, mesterséges intelligencia, szimuláció, játékprogramok, matematika, orvostudomány; mindegyiket a programozáshoz kapcsolva. Végeztünk tervezést, kódolást, tesztelést is. Belefért némi pályaorientáció is.

A STEM nyári tábor órarendje

Turnusonként 4 oktató kollégával és vendégelőadókkal hétfőtől-péntekig minden nap 8 és 18 óra között biztosítottuk a jelenlétet, felügyeletet. 40 órában szakmai programokat (elmélet+gyakorlat) kínáltunk. Reggelenként és késő délutánonként 1-1 órában offline, egyéni vagy csoportos játékok voltak kipróbálhatók. Ez mindösszesen 50 órát jelentett. Délelőttönként 20, 30 és 60 perces programokat terveztünk, délutánonként 120 és 240 perceseket. Szerdára szakmai kirándulást, gyárlátogatást ütemeztünk be. Íme az órarend áttekintő formában:

Íme az órarend naponként lapozható formában, benne a részletekkel:

Előzetes tapasztalataink

Előzetes tapasztalatainkat több forrásból merítettük, inspirálódtunk:

Köszönetnyilvánítás

Köszönjük résztvevő diákjainknak az aktivitást, a lelkesedést, a sok-sok elgondolkodtató kérdést, az offline kapott/szerzett élményeket, a pozitív visszajelzéseket.

Szeretnék köszönetet mondani együttműködő partnereinknek: LEGO Manufacturing Kft., REGIO Játékkereskedelmi Kft., Revolt Kereskedelmi Kft., Pannon Kincstár Humán Szakképző Központ.

Végül szeretnék köszönetet mondani minden oktató kollégámnak konstruktív részvételüként, kitartásukért a projekt teljes életciklusában. A tervezési, a szponzorszerző, a promóciós és a megvalósítási szakaszokban egyaránt 2023. április elejétől július végéig. Kiemelem korábbi és az aktuális projekthez kötődő tananyagfejlesztési tevékenységüket. A sikeresen lezárt projektünket augusztusban kipihenjük. 😉