Skandináv lottó demóprogram

Skandináv lottó (heteslottó) demóprogramot tervezünk és írunk meg Java nyelven. Lépésenként mutatja meg, hogy mi történik a háttérben: hogyan állítja elő véletlenszerűen a lottószelvényt.

Az emlékezet egy logikai tömb. Ebben 36 elem van. A nulladik elem nem számít, és legyen a többi elem (1-35-ig indexelve) kezdetben mind hamis. A cél: legyen a tömbben pontosan 7 db igaz érték. Másképpen: a logikai tömb a lottószelvényen megjátszható számok kiválasztottságát jelöli, igen vagy nem. A heteslottó-szelvény 7 db 1 és 35 közötti különböző egész számból áll.

Mindig 1 és 35 közötti egész véletlenszámot tippelünk. Kezdetben jóSzámDb=0. Az első tipp biztosan jó és jóSzámDb=1. A többi tipp esetén vizsgálni kell, hogy már kiválasztott-e. Ha igen, akkor nincs teendőnk. Ha nem, akkor meg kell jegyezni (kiválasztottá kell tenni, azaz igazzá kell állítani a logikai tömbben) és a jóSzámDb++ (növelhető). Mindezt ciklusban ismételjük, amíg a jóSzámDb<7 feltétel teljesül (másképpen: amíg nincs elegendő kiválasztott szám a szelvényen). Mindez biztosítja az egyediséget, különbözőséget. Ha jóSzámDb==7, akkor kiírjuk a lottószelvényre kerülő számokat az alapján, hol (melyik indexen) van a logikai tömbben igaz érték.

Tekintsük át az alkalmazott módszer hátrányait és előnyeit. Hátrány, hogy 36 logikai érték szükséges ahhoz, hogy 7 különböző számot előállítsunk. Előny, hogy egyszerű az algoritmus (nem kell keresés és megszámolás programozási tétel) és nincs szükség rendezésre sem, mert a szakterületre jellemző „emelkedő számsorrend” a logikai tömb bejárásával önkéntelenül is adódik. Hangsúlyozzuk, hogy ez csupán egyetlen módszer a nagyon sok izgalmas közül, amikkel generálható egy véletlenszerű lottószelvény.

A megvalósítás, Java forráskód nagy egyszerű. Íme egy függvény, amely visszaadja azt kiválasztottságot jelölő logikai tömböt, amiből megfelelően indexelve kiíratható a véletlenszerűen generált lottószelvény:

Egy demóprogram, szimulációs program, oktatóprogram esetén nem is a konkrét feladat megoldása a cél/probléma. Sokkal inkább a lépésenkénti bemutatás, sok-sok konzolos kiírással vagy grafikus szemléltetéssel. Sokszor időzítővel késleltetjük, lassítjuk, gyorsítjuk a folyamatot, de előfordul az is, hogy rengetegszer megismételjük a tevékenységet és a kapott adatokat elemezzük, következtetünk belőlük. Most például a ciklust ki kell cserélni olyan léptetésre, ami a felhasználó kattintásához kötődik. Ha kéri a következő tippet a lottószelvényre, akkor megkapja. Ha nem kattint, akkor nem kapja meg. Az is egy csalás/lehetőség lenne, hogy a háttérben nem is logikai tömb adatszerkezet van, csupán a vizualizáció miatt tűnik annak.

Az elkészült demóprogram megvalósítja a fenti algoritmust. Az alábbi képernyőképeken végiglapozható a demóprogram működése. Nem is az algoritmus megvalósítása a kihívás és a cél, hanem a folyamat lépésenkénti megjelenítése. Java swing grafikus felület készült el.

 

A demóprogram Start állapottal indul. Olyan a lépésenként tesztesetek sorozata, hogy a lottószelvény nem sikerül rögtön elsőre. Az egyik szám már előfordult korábban. A demóprogram Stop állapottal ér véget. A demóprogram pénztárszalagszerűen időnként jelzi, hol tart éppen. A demóprogram képes egymás után több lottószelvényt is előállítani és az emlékezete egyetlen szelvényre korlátozódik.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni. A Java EE szoftverfejlesztő tanfolyamunkon, a szakmai modul 33-40. óra Java Server Pages alkalmain már a program böngészőben futó változatát is el tudjuk készíteni.

Egy matematika érettségi feladat megoldása programozással 2021

érettségi logó

érettségi logóA 2021-es középszintű matematika érettségi feladatsor 12. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, megszámolás, kiválogatás. Többféle megoldás/megközelítés is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

A háromjegyű pozitív egész számok közül véletlenszerűen kiválasztunk egyet. Mennyi annak a valószínűsége, hogy a kiválasztott szám számjegyei különbözők? Megoldását részletezze!

1. megoldás

Az 1. megoldás egymásba ágyazott ciklusokkal behelyettesíti a szóba jöhető 900 db háromjegyű szám számjegyeit. A feltétel 648 esetben teljesül. Három számjegy azonosságát két részfeltétel és kapcsolatával eldönthetnénk a trichotómia miatt. Három számjegy különbözőségéhez három részfeltétel és kapcsolatából áll össze a feltétel. A válasz a kedvező és összes eset aránya/hányadosa, azaz 0,72. Másképpen 648 db szám a 900 db háromjegyű szám közül. A megoldás lépésszáma 900.

2. megoldás

Az egymásba ágyazott ciklusok lépésszáma összeszorzódik. A legbelső ciklus az előtte lévő feltételtől függően kevesebbszer is végrehajtódhat, hiszen a százas és tízes helyiértéken lévő számjegyek egyezése esetén nincs értelme az egyes helyiértéken lévő számjegy vizsgálatának. Így a 2. megoldás lépésszáma 810, azaz 10%-kal kevesebb. Ez a három részből álló feltétel két részre bontásával érhető el.

3. megoldás

A 3. megoldásban egyetlen ciklus végzi a vizsgálatot, a megszámolást. A ciklusváltozó már nem számjegy, hanem maga a háromjegyű szám, amiről döntést kell hozni: különbözik-e mindegyik számjegye vagy sem. Három beszédes nevű segédváltozó segít értelmezni a Java forráskódot. Ezek az egész osztás és a maradékos osztás műveleteivel állíthatók elő.

4. megoldás

A 4. megoldás logikai visszatérési értékű segédfüggvényt alkalmaz. Ez egy menekülőutas megoldás. Ha kizáró feltétel szerint már döntést tudunk hozni (például megegyezik a százas és a tízes helyiértéken lévő számjegy), akkor hamis értékkel menekülünk. Egyébként ág nélkül ezután következhet az egyes helyiértéken lévő számjegy összehasonlítása a többivel. A második feltétel az eddigiekhez képest tagadott, mert a menekülés a cél. Ha nincs menekülés amiatt, hogy volt két megegyező számjegy, akkor – a feltételek egymásra épülése miatt – nincs más hátra, mint igaz értékkel visszatérni (ami azt jelenti, hogy nem volt egyezés, azaz minden számjegy különbözött).

5. megoldás

Az 5. megoldás segédfüggvénye a háromjegyű szám esetén a különböző számjegyek darabszámával tér vissza. A röptében előállított százaz, tízes, egyes helyiértékeken lévő számjegyekből folyam adatszerkezet készül, aminek feldolgozását a Stream API műveletei (egyediesítő, megszámoló) végzik el. Ezt a vezérlő ciklusban hárommal összehasonlítva léptethető a megszámolást megvalósító változó, hiszen ha teljesül a feltétel, akkor eggyel több megfelelő szám van, mint előtte volt.

6. megoldás

Az 6. megoldás újra másképpen közelít. Ha könnyebbnek tűnik az a feltétel, hogy mikor nem jó (kedvezőtlen) nekünk egy szám, akkor beépíthetjük ezt is. Megszámoljuk azokat a háromjegyű számokat, amelyeknél egy vagy két számjegy azonos, majd ez kivonjuk a háromjegyű számok darabszámából.

7. megoldás

A 7. megoldás már mindent folyamokkal old meg, azok képességeire építve. Az összes háromjegyű számot előállítja, majd rajtuk kiválogatás programozási tételt (szűrőt) használ (az 5. megoldás segédfüggvényére építve), végül a folyamban maradó számokat megszámolja. Ez a megoldás már olyan haladóknak való, akik magabiztosan építik össze a Stream API műveleteit és a lambda kifejezéseket. Mindent egyben. Persze hol itt a hatékonyság? Hozzászólásokban megbeszélhetjük.

8. megoldás

A 8. megoldás szintén folyam adatszerkezettel működik, de négy egymást követő lépésben végez szűrést (kiválogatást). A 900 db háromjegyű számból indulunk ki. Az 1. szűrő kihagyja a 9 db AAA számot, amelyek számjegyei azonosak és így marad utána 891 db szám. A 2. szűrő után marad 810 db szám, mert kimarad az a 81 db AAB alakú szám (ahol a százas és tízes helyiértéken lévő számjegyek megegyeznek) az összesen 90 db-ból, ami még a folyamban maradt az 1. szűrő után. A 3. szűrő kihagy 81 db ABB alakú számot és meghagy 729 db számot. A 4. szűrő kihagy 80 db ABA alakú számot és meghagy 648 db ABC alakú számot.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, valamint 21-24. óra: Objektumorientált programozás, 2. és 3. rész alkalmaihoz kötődik.

 

Keresztrejtvény készítése

Támogatjuk a keresztrejtvények készítését Java programmal. A program grafikus felülete eszköztárból és a keresztrejtvényből áll. Az elkészült programban 10×10-től 15×15-ig beállítható négyzetrács készíthető elő. A tiltott négyzetek száma 15-től 30-ig beállítható. Mivel a tiltott négyzetek helyzete véletlenszerű, így nem biztos, hogy az elsőre jó/szerencsés lesz, ezért újragenerálható a négyzetrács. A program a tipikus követelményeknek megfelelően sorfolytonosan sorszámozza a négyzetrács elemeit, ami alapján megadhatók hozzá a vízszintes és függőleges feladványok. A program az elfogadott négyzetrácsot többféle képformátumban is el tudja menteni.

Az elkészült Java program grafikus felülete

Objektumorientált tervezés

A keresztrejtvény ábrája egy négyzetrácsból áll, amelyben rejtvénymezők helyezkednek el. A rejtvénymezőnek megfelel egy örökítéssel felüldefiniált címkekomponens. A rejtvénymezőt körülveszi egy szegély/keret, tiltott vagy sem állapotától függően fekete vagy fehér a háttérszíne, valamint van a bal felső sarkához igazított kis méretű betűvel nem kötelezően megjeleníthető sorszáma. A tiltott és sorszám tulajdonságait kell tudni beállítani és megkérdezni. Ez a feladatban a RejtvenyMezo POJO. A négyzetrács sorai és oszlopai azonos méretűek (pixelre és darabszámra egyaránt).

Algoritmus a keresztrejtvény sorszámozására

A rejtvénymezők kétdimenziós négyzetes mátrixban/tömbben helyezkednek el. A sorszámozáshoz hasznos, ha a négyzetrácsot körbeveszi egy tiltott rejtvénymezőkből álló keret. Először a rács sorain és oszlopain végighaladó egymásba ágyazott ciklusok létrehozzák a POJO-kat úgy, hogy a négyzetrács keretén lévő rejtvénymezők tiltottak, a többi nem tiltott. Ezután véletlenszerűen ki kell választani – a még nem tiltottak közül – a szükséges mennyiségű tiltott rejtvénymezőt. Ezután sorfolytonosan sorszámozni kell azokat a rejtvénymezőket, ahol vízszintes vagy függőleges feladvány kezdődik. Ehhez is két egymásba ágyazott ciklus kell, amelyben minden még nem tiltott rejtvénymező egyre növekvő sorszámot kap, ha tőle balra tiltott és tőle jobbra nem tiltott rejtvénymező helyezkedik el, de akkor is, ha felette tiltott és alatta nem tiltott rejtvénymező található.

A keresztrejtvényt sorszámozó algoritmus Java megvalósítása

Továbbfejlesztési lehetőségek

  • A feladványok listázhatók és kideríthető a hosszuk.
  • A tiltott rejtvénymezők véletlenszerű elhelyezése helyett lehetne valamilyen szabály, stratégia az egymáshoz való helyzetükre, távolságukra, közvetlen szomszédságukra vonatkozóan. Figyelembe vehetnénk valamilyen szimmetriát is, mintákat, alakzatokat is. Véletlenszerű elhelyezésük nem biztos, hogy mindig jó/szerencsés: például a tiltott rejtvénymezők körbezárhatnak egy nem tiltottat, hosszabb feladványokat nehezebb találni…
  • A Java SE szoftverfejlesztő tanfolyam tematikájához kötődően többféle szótárból, fájlformátumból betölthetünk a feladványokhoz használható, például 7 betűs országnevek, 2 betűs kémiai elemek, női/férfi keresztnevek, autójelek, pénznemek, szinonimák…
  • A Java EE szoftverfejlesztő tanfolyam tematikához kötődően többféle webes adatforrásból, Wikipédiából, szótárból, API hívásokkal letölthetünk a feladványokhoz használható listákat, meghatározásokat, kulcs-érték párokat. A swing-es felületet lecserélhetjük böngészőben futó webes GUI-ra is.
  • A Java adatbázis-kezelő tanfolyam tematikájához kötődően a fentiek kiegészítéseként tervezhetünk és építhetünk helyben tárolt tudástárat, adatbázist, amiből hatékonyan lekérdezve adhatunk feladványokat a keresztrejtvényhez.
  • Miután a fentiek szerint valahogyan – tipikusan visszalépéses algoritmussal – meghatároztuk a feladványokat, a keresztrejtvényből menthetünk kitöltött változatot is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Sankey-diagram készítése

Sankey diagram logó

Sankey-diagram-logoA Sankey-diagram alkalmas kétféle adatsor közötti N:M fokszámú kapcsolat, összefüggés és a köztes átmenet ábrázolására. Hangsúlyozza a fő átvitelt vagy áramlatokat egy rendszeren belül. Az áramlás irányát nyíllal szemlélteti és az áramlatok szélessége arányos az áramlási mennyiségekkel.

Feladat

Jelenítsük meg HTML formátumú weboldalként a magyarországi régiókban a foglalkoztatottak számát nemzetgazdasági szektorok szerint a KSH 2018-as adatsora alapján! Automatizáljuk egy Java programmal úgy a feladatot, hogy az év paraméterként megadható legyen!

Tervezés

A KSH témastruktúrában a táblázat elérési útja:

  • 5. Területi adatok,
  • 5.1. A munkaerő-piaci tendenciák Magyarország régióiban,
  • 5.1.3. A foglalkoztatottak száma nemzetgazdasági szektorok szerint, nemenként (2008–)

Online böngészhető táblázat:
http://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/h_qlf017.html.

Letölthető táblázat (XLS formátumban): http://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/xls/h5_1_3.xls.

A táblázatban lévő adatforrás szükséges része látható az ábrán:

KSH adatforrás Sankey-diagramhoz

A táblázatban a régiók az A105:A112 cellatartományban találhatók. A hozzájuk tartozó 3 nemzetgazdasági szektor a B-C-D oszlopok azonos soraiból olvashatók ki. POJO-k létrehozása mindenképpen hasznos a megvalósításhoz, például new SankeyData("Közép-Dunántúl", "Szolgáltatás", 253.89). Ezekből generikus listát is célszerű építeni: List<SankeyData> sankeyDataList.

Többféleképpen is hozzájuthatunk az adatokhoz attól függően, hogy milyen előismeretekkel rendelkezünk a különböző tanfolyamainkon:

  • A Java SE szoftverfejlesztő tanfolyamon „kézzel” letölthetjük a projekt files mappájába az XLS fájlt. Ezután akár manuálisan is összeállítható a POJO lista, vagy a JExcel API-val is hatékonyan feldolgozható a XLS fájl aktuális munkalapja. Fájlkezelés előtt az összeállított HTML fájlt kiírathatjuk a konzolra, ahonnan „kézzel” vágólapozva létrehozhatjuk belőle a szükséges HTML fájlt. Fájlkezeléssel persze adott mappába, adott fájlnévvel, kivételkezeléssel a java.io vagy java.nio csomagot használva a HTML fájl generálása is automatizálható.
  • A Java EE szoftverfejlesztő tanfolyamon megvalósítható, hogy a program kivételkezeléssel hálózati kapcsolatot épít, majd letölti az XLS fájlt és ezzel a feladat visszavezethető az előző esetekre. Azt is megtehetjük, hogy az XLS fájlt nem töltjük le, hanem olvasunk belőle közvetlenül a webről. Ekkor is rendelkezésünkre áll a POJO lista. Itt már tudunk HTML fájlt is automatikusan generálni.

Tanulmányoznunk kell a Google Charts galériában a Sankey diagram dokumentációját! Meg kell ismernünk a paraméterezési lehetőségeit és JavaScript forráskódját!

Megvalósítás

A createSankeyDiagram() függvény létrehozza a HTML fájl szöveges tartalmát. Átveszi adatforrásként a sankeyDataList generikus POJO listát. A String típusú sankeyData objektum tartalmazza a Stream API-val hatékonyan összefűzött – POJO-któl elkért – toString() szövegeket. Ezek a diagramhoz szükséges adatok ( addRows …). Például: "['Közép-Dunántúl', 'Szolgáltatás', 253.89]". A  String típusú  html objektum kezdetben tartalmazza a diagramhoz nem szükséges fix részeket, a diagram alapbeállításait, valamint a diagram fejlécéhez szükséges metaadatokat ( addColumnRégió, Nemzetgazdasági szektor, Foglalkoztatottak száma (ezer fő)). A függvény végül a html objektum #SankeyData# részét cseréli a sankeyData-val és az adatfüggő résszel frissített HTML tartalommal tér vissza.

Eredmény

Az egyik eredmény a generált HTML fájl (benne a grafikonhoz tartozó JavaScript) forráskódját tartalmazza:

A másik eredmény a Sankey-diagram képernyőképe, amelyről kiválóan leolvashatók az értékek:

Sankey-diagram

A böngészőben megjelenő HTML oldalon a Sankey-diagram dinamikusan – az egérkurzor pozíciójától függően – képes az aktuális adatok megjelenítésére, mintegy lebegő jelmagyarázatként.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Fibonacci-spirál

Fibonacci nap

Fibonacci nap 2018A Fibonacci-spirál a népszerű Fibonacci-sorozat elemei által meghatározott oldalhosszúságú négyzetekbe rajzolt maximális sugarú negyedkörök megfelelően összeillesztett darabjaiból/sorozatából áll. Sokszor hasonlítják az arany spirálhoz (jól közelíti), amely az aranymetszéshez kötődik.

A Fibonacci-spirál

Vegyük a Fibonacci-sorozat első 10 elemét! Rajzoljuk egymás mellé az alábbi elrendezésben belülről kifelé haladva az 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 oldalhosszúságú négyzeteket (az alábbi ábrán vékony sárgával jelölve). Piros színnel rajzoljuk bele a négyzetekbe a négyzet oldalhosszával megegyező sugarú negyedköröket. A negyedkörök megfelelő elrendezésben folytonos görbét alkotnak, és ezt nevezzük Fibonacci-spirálnak (az alábbi ábrán vastag pirossal jelölve).

Fibonacci-spirál 1

A rajzolás bármeddig folytatható, mert a sorozat végtelen, a négyzetek illeszkednek és az ábra rekurzív, önhasonló. Az alábbi animáció mutatja, hogyan alakul a spirál a nézőpont közelítésével. A viselkedés távolítás során is azonos lenne.

Fibonacci-spirál 2

Korábban blogoltunk már a Fibonacci napról, amelyet minden évben november 23-án ünneplünk. A sorozat első néhány eleméből összeáll a 11.23. és értelmezhető dátumként. Most nem a sorozat elemeinek előállítására fókuszálunk, hanem arra, hogy ezekből felépítsük a Fibonacci-spirált.

Készítsünk Java programot!

Grafikus felületű Java programot készítünk, amely 21 animációs fázisban mutatja be a Fibonacci-sorozat első 10 eleméből álló Fibonacci-spirál felépítését. A rajzolás fázisai:

  • Az 1. fázis a kiindulópontként tekinthető fehér, üres rajzlap. A rajzlap fekvő, mérete 890*550 pixel, amelyre éppen elfér a 10 negyedkörből álló spirál.
  • A 2-11. fázisban megfelelő pozícióba/koordinátákra kerülnek fel az ábra vázát alkotó négyzetek, belülről kifelé haladva. A négyzetek oldalainak hosszúsága a sorozat elemeinek megfelelő. A szomszédos négyzetek különböző színekkel kitöltöttek és mindegyikben megjelenik a sorozat megfelelő eleme.
  • A 12-21. fázisban – szintén belülről kifelé haladva – a négyzetek törlődnek és helyükre a spirált alkotó negyedkörök kerülnek fekete színnel. A 21. fázist tekintjük végeredménynek.

A fázisok kézzel, nyilakkal jelölt (Első, Előző, Következő, Utolsó) vezérlő nyomógombokkal megjeleníthetők, illetve egyben, időzítve animációként is lejátszható a rajzolási folyamat. Az elkészült program működése megfigyelhető az ábrán:

Fibonacci-spirál Java program

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni.