KSH táblázatból dolgozunk

KSH-logo

KSH-logoA Központi Statisztikai Hivatal honlapján elérhető STADAT táblákból könnyen kinyerhetjük a nekünk szükséges adatokat. A témastruktúrába sorolt online és XLS exportként is böngészhető táblázatokban megtalálhatjuk logikusan csoportosítva összesítve az adatokat régiónként (megyénként), évenként, százalékosan. Az XLS fájlformátum Java nyelven a JExcel API-val hatékonyan feldolgozható. Lássunk erre egy példát!

Feladat

A KSH 2.1.2.35. táblázatából gyűjtsük ki a 19 magyar megyére + Budapestre vonatkozóan a gazdaságilag aktívak létszámát és az első évet alapnak tekintve adjuk meg évenként a változást százalékosan!

Tervezés

A KSH témastruktúrában a táblázat elérési útja:

  • 2. Társadalom,
  • 2.1. Munkaerőpiac,
  • 2.1.2. A munkaerőpiac alakulása Magyarországon (1998–2018) -> Területi adatok,
  • 2.1.2.35. A 15–64 éves népesség gazdasági aktivitása megyénként és régiónként (1998–2018)

Online böngészhető táblázat:
https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/mpal2_01_02_35.html.

Letölthető táblázat (XLS formátumban): https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/xls/h2_1_2_35.xls.

A táblázat A oszlopában szerepelnek a régiók, megyék, időszakok (vegyesen, szövegként) és a D oszlopában a gazdaságilag aktívak (ezer fő, valós számként). A fejlécet nem szabad feldolgozni. 1998-tól 2018-ig 546 sorból áll az adatsor. A csoportosítás 26 régiót és megyét tartalmaz, amiből a 6 régiót (például: Közép-Dunántúl) ki kell hagyni.

A megyékre vonatkozóan 440 sort kell feldolgozni. Ebből az első sor a megye (vagy Budapest) neve, a többi (2019-ben 21 db) sorban találhatók az adatok (időszak). Olyan algoritmusban érdemes gondolkodni, ami a jövőben is működik. Ha csoportváltást alkalmazunk, akkor nem számít, hogy megyénként minden évben egy sornyival több adat lesz majd. A KSH táblázatok szerkezete nagyon ritkán változik, így bátran írható rájuk testre szabott forráskód (ezeket nem kell évente frissíteni).

Az évenkénti változást százalékosan nem tartalmazza a táblázat, ezt nekünk kell kiszámítani. A valós számok formázását érdemes egységesíteni, például a gazdaságilag aktívak létszámát 3 tizedesre, a változást 2 tizedesre kerekítve.

A belső adatábrázolást érdemes átgondolni. Hasznos, ha az időszakhoz tartozó három összetartozó adatot egyetlen Data POJO-ba fogjuk össze ( String period, double active és double change). Ezeket generikus listába szervezve ( ArrayList<Data> list) könnyen hozzájuk rendelhető a megye ( String county) és ezek együtt alkotják a Region POJO-t. A Region és Data kapcsolati fokszáma: 1:N. 2019-ben N=21 .

Részlet a megoldásból

A JExcel API használatához a Java projekthez hozzá kell adni a jxl.jar fájlt. A XLS fájl olvasható közvetlenül a webről is, de egyszerűbb helyi fájlrendszerbe mentett változatból dolgozni ( ./files/h2_1_2_35.xls). A megyék nevében található ékezetes karakterek miatt ügyelni kell a megfelelő karakterkódolásra ( Cp1252). A munkafüzet azonosítását követően hivatkozni kell a feldolgozandó munkalapra ( 2.1.2.35.). Az adatfeldolgozás során kihagyott régiókat (kivételeket) érdemes listába gyűjteni ( skipRegionList). A csoportváltást a két egymásba ágyazott ciklus valósítja meg. Ügyelni kell az adatok formátumának ellenőrzésére.

Eredmények

Például Somogy megyére az alábbi adatokat kapjuk eredményként (XLS formátumban, Excel-be betöltve, tipikus háttérszín kiemeléssel: szélsőértékek a C oszlopban, negatív értékek a D oszlopban):

KSH-result

További programozható feladatok

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik (ha az XLS fájlt a helyi fájlrendszerből érjük el), és a Java EE szoftverfejlesztő tanfolyam tematikájához kapcsolódik (ha az XLS fájl tartalmát közvetlenül a webről olvassuk).

Céline Dion – Courage World Tour

Céline Dion Courage World Tour

Céline Dion Courage World TourA Céline Dion – Courage World Tour esettanulmányunkban a turné első részének koncerthelyszíneit jelenítjük meg Google Charts segítségével. Ebben a blog bejegyzésben a tervezés, megvalósítás lépéseit tekintjük át és megmutatjuk az eredményeket. A Java és JavaScript forráskódokat most nem részletezzük.

Háromféle grafikont használunk

  • idővonal (Timeline) időpontok és helyszínek Gantt diagram-szerűen,
  • térkép (Geo Chart) városok megjelölésével és időpontok jelmagyarázatban,
  • tematikus térkép az USA államaival (szintén Geo Chart), az állam területén adott koncertek száma alapján és db jelmagyarázatban.

A tervezés és megvalósítás lépései

  1. Adatokat kell szerezni egy weboldal (https://www.celinedion.com/in-concert) feldolgozásával ( saveHTML()). Ehhez a művelet a GET. Figyelni kell a megfelelő User-Agent paraméterezésére és a karakterkódolásra ( ISO-8859-1). A kapott bemeneti folyam feldolgozását pufferelt módon érdemes elvégezni. Célszerű az adatforgalom minimalizásása érdekében a weboldal tartalmát helyi fájlba menteni ( tour.html). Ügyelni kell a kötelező és az ajánlott kivételkezelésre.
  2. Értelmezni kell a tour.html fájlt. A HTML tartalom végén JSON formátumban beágyazva elérhetők a koncert turné állomásainak adatai: nekünk kell a város ( city), helyszín ( venue), dátum/idő ( startDate). Érdemes külön fájlba menteni a tour.html-ből a JSON tartalmat ( tour.json), mert abból egyszerűen betölthető ( saveJSON()).
  3. Tanulmányozni kell a Google Charts diagramok közül azt a kettőt, amiket testre kell szabni: Timeline és Geo Chart. Tudni kell: mi a diagramot tartalmazó weboldal állandónak tekinthető eleje és vége (ezeket hasznos külön interfészben konstansként tárolni: HTMLFileContent), valamint mi az adatoktól függő része (közepe). Ismerni kell a szükséges metaadatok és adatok formátumát. Érdemes átnézni a különböző testre szabási és formázási lehetőségeket a fenti diagramtípusoknál (esetleg a többi típusból is meríthetünk ötleteket).
  4. A koncert turné állomásainak összetartozó 3 adatát le kell képezni POJO-vá ( Event). Ezt érdemes privát változókkal ( city, venue, startDate) és factory metódussal megvalósítani. Célszerű, ha az adatok visszakérésére alkalmas getter metódusok is készülnek ( getTimelineChartDataTableRow(), getGeoChartDataTableRow()), amelyek kiszolgálják a megfelelő diagramtípus igényeit.
  5. A tour.json fájl feldolgozásával (parszolásával) Event típusú generikus listába vagy JSON tömbbe könnyen leképezhetők az adatok.
  6. Hasznos egy vezérlőosztály létrehozása, amely a 3 diagramtípust előállító (HTML fájlt generáló) metódust ( createTimelineChart(), createGeoChartCity(), createGeoChartCountry()) valamint a belépési pontot ( main()) tartalmazza.
  7. Generálható az idővonalat tartalmazó timelineChart.html fájl a createTimelineChart()metódussal. Ehhez 5 oszlop megadása szükséges (ebben a sorrendben): label, city, tooltip, start, end. Az első 3 adat string, az utolsó 2 adat date típusú. Egy példa Event: ['2019.09.18.', 'Québec, QC', 'Videotron Centre', new Date(2019, 09, 18, 19, 0, 0), new Date(2019, 09, 18, 21, 0, 0)].
  8. Regisztrálni kell egy Google Cloud Platform felhasználói fiókot és tanulmányozni kell a geokódolás folyamatát és lehetőségeit, hiszen a városok nevéből (formátum pl.: 'Minneapolis, MN') szükség lesz azok térképi koordinátáira. Aktiválni kell a szolgáltatás használatához szükséges mapsApiKey-t.
  9. Generálható a városokat tartalmazó geoChartCity.html fájl a createGeoChartCity() metódussal. Ehhez 3 oszlop megadása szükséges (ebben a sorrendben): city, dateCity, no . Egy példa Event: ['Minneapolis, MN', '2019.11.01. Minneapolis, MN', 1].
  10. Generálható a régiókat/államokat tartalmazó geoChartCountry.html fájl a createGeoChartCountry() metódussal. Ez egy tematikus térkép: a különböző színek jelölik az egy régió/állam városaiban tartott koncertek számát. Ehhez az adatok megfelelő rendezését követően végrehajtott csoportváltás algoritmus szükséges. 2 oszlop megadása szükséges: country, concertNo. Egy példa adatsor: ['US-TX', 3].

Az eredmények

TimelineChart grafikon:

GeoChartCity grafikon:

GeoChartCountry grafikon:

Érdemes megismerni további – térképekhez kapcsolódó – grafikontípusokat is: Geomap, Intensity Map.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A példák a Java SE szoftverfejlesztő tanfolyam 37-44. óra: Fájlkezelés és a Java EE szoftverfejlesztő tanfolyam 1-4. óra: Elosztott alkalmazások, webszolgáltatások és 13-16. óra: JSON feldolgozás alkalmaihoz kötődnek.

Hello World! másképpen

Hello World! - Piet programozási nyelven

Hello World! - Piet programozási nyelvenA programozási nyelvek tanulásának első lépése a „Hello World!” szintaktikájának megismerése, és egyben teszt arra is, hogy megfelelő-e a fejlesztői környezet telepítése, konfigurálása. Megjelenik-e a „Hello World!” a konzolon, felbukkanó ablakban, önálló ablakban, weblapon, üzenetben? Mit kell ezért tenni? Néhány Java példát nézünk erre.

1. Konzolos megoldás

Ez a kiinduló állapot. Futtatva a programot, a konzolon jelenik meg a szöveg.

2. Swing 1. megoldás

Itt felbukkanó párbeszédablakban jelenik meg a szöveg. A JOptionPane ablaka itt önálló, így nincs olyan szülője/tulajdonosa ( null), ahonnan elveheti a fókuszt.

3. Swing 2. megoldás

Itt egy testre szabott JFrame utód készül, alapvető beállításokkal. Az ablak címsorában jelenik meg a szöveg. Az ablak saját magát példányosítja és főablakként viselkedik, vagyis gondoskodik saját maga láthatóságáról, fókusz- és eseménykezeléséről (utóbbi 2 most nincs).

4. JavaFX megoldás

Itt egy testre szabott  Application utód készül, minimál beállításokkal. Az ablak címsorában jelenik meg a szöveg. Az ablak saját magát példányosítja és főablakként viselkedik.

5. Applet megoldás

Böngészőben fut a testre szabott JApplet utód. A weblapon elfoglalt téglalap alakú területen vízszintesen balra és függőlegesen középen jelenik meg a címke komponensben a szöveg.

6. JSP 1. megoldás

Ez egy JSP weboldal automatikusan generált forráskódja. Böngészőben jelenik meg a szöveg.

7. JSP 2. megoldás

Ez egy JSP weboldal egyszerű direktívával a h1 címsorban.

8. Servlet megoldás

Itt egy szervlet által generált weboldal, amely fixen tartalmazza a szöveget.

9. Atipikus 1. megoldás

„Adatbázisból is lekérdezhető” a szöveg.

10. Atipikus 2. megoldás

Ebben az esetben a Java nyelv által biztosított véletlenszám generáló osztályra támaszkodva állítjuk elő a szöveget. Mivel a random objektum által előállított számok csupán a véletlenség látszatát keltik, de valójában egy algoritmus szerint készülnek, ezért előre teljes pontossággal megjósolható a kimenet. Csupán meg kell találni azt a kezdőértéket, ami után „véletlenül” pont a h, e, l, l, o betűk fognak következni. Megismételve a folyamatot egy másik kezdőértékkel, megkapjuk a w, o, r, l, d  betűket is.

A bejegyzéshez tartozó teljes forráskódot – több projektben – ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A példák a Java SE szoftverfejlesztő tanfolyam, a Java EE szoftverfejlesztő tanfolyam és a Java adatbázis-kezelő tanfolyam több alkalmához is kötődnek (kivéve 4. és 5.).

Hivatkozások a témakörben, amelyek más programozási nyelvek példáit is tartalmazzák:

Egy matematika érettségi feladat megoldása programozással 2019

érettségi logóA 2019-es középszintű matematika érettségi feladatsor 16. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, kiválasztás. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

16. a) feladat

Péter elhatározza, hogy összegyűjt 3,5 millió Ft-ot egy használt elektromos autó vásárlására, mégpedig úgy, hogy havonta egyre több pénzt tesz félre a takarékszámláján. Az első hónapban 50000 Ft-ot tesz félre, majd minden hónapban 1000 Ft-tal többet, mint az azt megelőző hónapban. (A számlán gyűjtött összeg kamatozásával Péter nem számol.) Össze tud-e így gyűjteni Péter 4 év alatt 3,5 millió forintot?

1. megoldás

Az 1. megoldás egyszerűen behelyettesít a számtani sorozat n-edik elemének ( an) és n-edik összegének ( sn) képleteibe. A kérdés (eldöntés): eléri-e az összeg a 3,5 millió Ft-ot? A válasz igen: a 48. iteráció/hónap után 3528000 Ft-ot kapunk.

2. megoldás

A 2. megoldás a sorozatszámítás programozási tételt használja. Minden hónapra (1-től 48-ig) meghatározzuk az aktuális havi összeget ( an) és növeljük vele a gyűjtőt ( sn).

3. megoldás

A 3. megoldás során az első hónapot külön kezeljük és a d differenciát/növekményt is folyamatosan – az előző havi összegből kiindulva – növeljük a ciklusban a 2.-tól a 48. hónapig 1000 Ft-tal.

4. megoldás

A 4. megoldás során megváltozik a kérdés: hányadik hónapban érjük el (vagy haladjuk meg) a 3,5 millió Ft-ot? A válasz: a 48. hónap/iteráció után és 3528000 Ft-ot kapunk.

16. b) feladat

A világon gyártott elektromos autók számának 2012 és 2017 közötti alakulását az alábbi táblázat mutatja.

16_feladat_b_táblázat

Szemléltesse a táblázat adatait oszlopdiagramon!

Ezt most itt nem részletezem, mert hasonló grafikonrajzolásról már blogoltunk korábban, lásd:

16. c) feladat

Péter az előző táblázat adatai alapján olyan matematikai modellt alkotott, amely az elektromos autók számát exponenciálisan növekedőnek tekinti. E szerint, ha a 2012 óta eltelt évek száma x, akkor az elektromos autók számát (millió darabra) megközelítőleg az f(x)=0,122*20,822x összefüggés adja meg. A modell alapján számolva melyik évben érheti el az elektromos autók száma a 25 millió darabot?

1. megoldás

Egyszerű átrendezést és behelyettesítést követően az  x: 9.341731310065603 eredményt kapjuk. Ebből következtethető, hogy 2012 után a 10. évben (azaz 2022-ben) érheti el az elektromos autók száma a 25 millió darabot.

2. megoldás

A függvény behelyettesítését tizedenként közelítve végzi a ciklus, amíg el nem éri a 25-öt. Az utolsó eredményből ( x: 9,40, f: 25,84) ugyanaz következtethető, mint az 1. megoldásnál.

16. d) feladat

Egy elektromos autókat gyártó cég öt különböző típusú autót gyárt. A készülő reklámfüzet fedőlapjára az ötféle típus közül egy vagy több (akár mind az öt) autótípus képét szeretné elhelyezni a grafikus. Hány lehetőség közül választhat a tervezés során? (Két lehetőség különböző, ha az egyikben szerepel olyan autótípus, amely a másikban nem.)

A metódust futtatva az alábbi eredményt kapjuk. 31-féle különböző reklámfüzet fedőlap készíthető:

A megoldást valósnak tekinthető adatokkal konkretizáltam. Az autók nevét ötelemű tömb ( autoTomb) tárolja. A számok 1-től 31-ig (tízes számrendszerben) öt biten 00001-től 11111-ig ábrázolhatók (vezető nullákkal) kettes számrendszerben. A bináris alakban előforduló 1-es bit jelöli a kiválasztott autó nevének  autoTomb.length-1-j képlettel korrigált indexét (0-tól 4-ig) a tömbben.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, valamint 21-24. óra: Objektumorientált programozás, 2. rész alkalmaihoz kötődik.

Húsvétvasárnap

Húsvétvasárnap

HúsvétvasárnapA nyugati kereszténység húsvétvasárnapja legkorábban március 22-ére, legkésőbb április 25-re esik. Másképpen: a húsvét mozgó ünnep, azaz nem esik az év ugyanazon napjára minden évben. Az első niceai zsinat 325-ben úgy határozott, hogy legyen a keresztény húsvét időpontja a tavaszi napéjegyenlőség utáni első holdtöltét követő vasárnap.

A húsvét kiszámítására a legismertebb algoritmus Gauss módszere. A Java implementációban az easterGauss() függvény által elfogadható év paramétert életszerűen lekorlátoztam 1900-2099-ig terjedő évekre, valamint a vezérlés az aktuális és a rákövetkező 19 évben ír ki eredményt:

Az algoritmus részletes magyarázata alapján könnyen kiegészíthető úgy, hogy tetszőleges évre, illetve különböző naptárakra is működjön.

A kapott eredmények megtekinthetők:

A feladat – a kivételkezeléstől eltekintve – a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek alkalmához kötődik.

Készítettem egy kipróbálható JavaScript változatot is. A csúszkán a kör mozgatásával megkaphatjuk az aktuális és a következő néhány évben a húsvétvasárnap dátumát.

Húsvétvasárnap a megadott évben: