Egy matematika érettségi feladat megoldása programozással 2022

érettségi logó

érettségi logóA 2022-es középszintű matematika érettségi feladatsor eléggé egyszerű volt, de azért a 6. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá a megszámolás programozási tétel. Többféle megoldás/megközelítés (iteratív és rekurzív) is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

6. feladat

Egy feleletválasztós teszt 5 kérdésből áll, minden kérdésnél négy válaszlehetőség van. Hányféleképpen lehet az 5 kérdésből álló tesztet kitölteni, ha minden kérdésnél egy választ kell megjelölni?

1. megoldás

Rögtön tudjuk, hogy ez kombinatorika, n elem k-ad osztályú ismétléses variációja, amelynek paraméterei: n=4, k=5. A hatványozás azonosságainak ismeretében fejből is tudjuk a megoldást: 45=210=1024. A Java forráskód elvégzi a hatványozást. A Math.pow() függvény általánosabb, mint amire most szükségünk van. Fogad double valós paramétereket és double típusú értékkel tér vissza. Ezért hasznos az (int) explicit típuskényszerítés.

Másképpen: négy elemű halmazból öt elemet kiválasztunk és ezeket sorba rendezzük (permutáljuk) és egy elemet egy csoportban akár ötször is felhasználhatunk. Számít a sorrend. A lehetséges variációk száma: 1024.

2. megoldás

Ha hasznos lenne egy általános metódus az ismétléses variáció kiszámítására, akkor ez egy tipikus megoldás lehet erre. Kiegészítendő még a két paraméter előjelének ellenőrzésével.

3. megoldás

Ha a megértést segíti, akkor a teljes leszámolás (brute force) módszerével, egymásba ágyazott ciklusokkal könnyen kiírathatjuk a konzolra az 1024 db különböző válaszlehetőséget. A k-val kezdődő sorszámozott ciklusváltozók jelölik az öt kérdést, azon belül az 'a'-tól 'd'-ig karakterek adják a válaszlehetőségeket. Eredményül ezt kapjuk (görgethető):

4. megoldás

Ha csak a végeredmény szükséges, akkor ez az iteratív megoldás a megszámolás programozási tétellel előállítja azt.

5. megoldás

Ez egy rekurzív megoldás. Ciklus helyett a metódus önmagát hívja meg, így valósul meg az ismételt utasításvégrehajtás. A válaszlehetőségek összefűzésével (konkatenáció) előállított válasz akkor megfelelő, ha annak hossza öt. Ez esetben kiíródik a válaszlehetőség a konzolra (mintegy mellékhatásként). Ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

6. megoldás

Szintén, ha csak a végeredmény szükséges, akkor ez a mellékhatással rendelkező rekurzív metódus előállítja azt. A mellékhatás most az, hogy a metódus eljárás és nem függvény és szükséges hozzá a db osztályváltozó (ami a metódushoz képest globálisnak is tekinthető).

7. megoldás

Ez a megoldás a válaszlehetőségeket megfelelteti n alapú számrendszerben k számjegyből álló számoknak. A kétdimenziós tömbben számokat tárol, így:

  • 1,…,1,1 → 0…0000
  • 1,…,1,2 → 0…0001
  • 1,…,1,n → 0…001(n1)
  • 1,…,2,n → 0…001(n1)
  • n,…,n,n → (n1)...(n1)

Végül a kiíró ciklus ezeket a számokat karakterekké alakítja ( 'a' ASCII kódja 97) és fordított sorrendben írja ki, hogy ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

Továbbfejlesztési lehetőségek

  • A 2. megoldáshoz: teszteljük le a lehetséges túlcsordulást és az int típus helyett szükség esetén használjunk long típust!
  • A 3. megoldáshoz: építsünk kétdimenziós tömb adatszerkezetet, amiből később az i-edik válaszlehetőség megadható!
  • Előzőhöz: állítsuk elő lexikografikus sorrendben az i-edik válaszlehetőséget adatszerkezet felépítése nélkül!
  • A 6. megoldáshoz: valósítsuk meg a rekurzív gondolatmenetet mellékhatás nélkül!
  • Teszteljünk: mennyi idő alatt hajtódik végre a 4. és a 6. megoldás? Mekkora paraméterekkel érzékelhető, hogy a rekurzió jóval lassabban fut?
  • A 7. megoldáshoz: cseréljük le az egésztömb adatszerkezetet karaktertömbre!

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, valamint 21-24. óra: Objektumorientált programozás 1. rész alkalmaihoz kötődik.

Fibonacci-spirál

Fibonacci nap

Fibonacci nap 2018A Fibonacci-spirál a népszerű Fibonacci-sorozat elemei által meghatározott oldalhosszúságú négyzetekbe rajzolt maximális sugarú negyedkörök megfelelően összeillesztett darabjaiból/sorozatából áll. Sokszor hasonlítják az arany spirálhoz (jól közelíti), amely az aranymetszéshez kötődik.

A Fibonacci-spirál

Vegyük a Fibonacci-sorozat első 10 elemét! Rajzoljuk egymás mellé az alábbi elrendezésben belülről kifelé haladva az 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 oldalhosszúságú négyzeteket (az alábbi ábrán vékony sárgával jelölve). Piros színnel rajzoljuk bele a négyzetekbe a négyzet oldalhosszával megegyező sugarú negyedköröket. A negyedkörök megfelelő elrendezésben folytonos görbét alkotnak, és ezt nevezzük Fibonacci-spirálnak (az alábbi ábrán vastag pirossal jelölve).

Fibonacci-spirál 1

A rajzolás bármeddig folytatható, mert a sorozat végtelen, a négyzetek illeszkednek és az ábra rekurzív, önhasonló. Az alábbi animáció mutatja, hogyan alakul a spirál a nézőpont közelítésével. A viselkedés távolítás során is azonos lenne.

Fibonacci-spirál 2

Korábban blogoltunk már a Fibonacci napról, amelyet minden évben november 23-án ünneplünk. A sorozat első néhány eleméből összeáll a 11.23. és értelmezhető dátumként. Most nem a sorozat elemeinek előállítására fókuszálunk, hanem arra, hogy ezekből felépítsük a Fibonacci-spirált.

Készítsünk Java programot!

Grafikus felületű Java programot készítünk, amely 21 animációs fázisban mutatja be a Fibonacci-sorozat első 10 eleméből álló Fibonacci-spirál felépítését. A rajzolás fázisai:

  • Az 1. fázis a kiindulópontként tekinthető fehér, üres rajzlap. A rajzlap fekvő, mérete 890*550 pixel, amelyre éppen elfér a 10 negyedkörből álló spirál.
  • A 2-11. fázisban megfelelő pozícióba/koordinátákra kerülnek fel az ábra vázát alkotó négyzetek, belülről kifelé haladva. A négyzetek oldalainak hosszúsága a sorozat elemeinek megfelelő. A szomszédos négyzetek különböző színekkel kitöltöttek és mindegyikben megjelenik a sorozat megfelelő eleme.
  • A 12-21. fázisban – szintén belülről kifelé haladva – a négyzetek törlődnek és helyükre a spirált alkotó negyedkörök kerülnek fekete színnel. A 21. fázist tekintjük végeredménynek.

A fázisok kézzel, nyilakkal jelölt (Első, Előző, Következő, Utolsó) vezérlő nyomógombokkal megjeleníthetők, illetve egyben, időzítve animációként is lejátszható a rajzolási folyamat. Az elkészült program működése megfigyelhető az ábrán:

Fibonacci-spirál Java program

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni.

Koch-görbe rajzolása

Koch-görbe

Koch-görbeA Koch-görbe egyike a legrégebben ismert egyszerű fraktáloknak. Mint ilyen, önhasonlóan rekurzív. Az önhasonlóság azt jelenti, hogy az ábra tetszőleges részét felnagyítva mindig hasonló/ugyanolyan részek jelennek meg (a méretaránytól függetlenül). Az n=1 szinten a Koch-görbe kiindulópontja egy szabályos háromszög. A n+1-edik szinten az n-edik szinten található szakaszokat harmadoljuk, és a középső szakasz helyére egy harmad akkora háromszög két szárát illesztjük (az alapját kihagyjuk). Ezt rekurzívan folytatva kapjuk meg a Koch-görbét, másképpen Koch-féle hópelyhet.

Írtam egy egyszerű Java programot, amely n=1-től 9-ig paraméterezhetően kirajzolja a Koch-görbét egy grafikus felületre. Így működik:

Koch-görbe rajzolását bemutató program működése

A program elkészítéséhez néhány alapvető dolgot kell csupán tudni:

  • Vászontechnikával tudunk swing GUI felületre ( Graphics osztályú g objektum) rajzolni, ahol a koordináta-rendszer origója egy téglalap alakú terület bal felső csúcsa, X jobbra növekszik, Y pedig lefelé növekszik.
  • Kétféle szín áll rendelkezésre: háttérszín (most Color.WHITE), illetve rajzolószín (most Color.BLUE).
  • A rajzoláshoz grafikai primitíveket használhatunk, például pont, szakasz, téglalap, ellipszis. Szakaszt két végpontjának koordinátáival tudunk rajzolni a drawLine() metódussal.
  • Be kell állítani a vászon méreteit, azaz annak a komponensnek ( JPanel-ből öröklött KochPanel osztályú pnKoch objektum) a méreteit, amelyre ráfeszül a vászon.
  • Egy Slider osztályú sSzint nevű vezérlőobjektum ChangeListener figyelőinterfész stateChanged() eseménykezelő metódust implementáló objektumával paraméterezzük a rajzolást 1-től 9-ig.
  • A pnKoch objektumnak küldött repaint() üzenet/metódushívás meghívja a felüldefiniált paintComponent() metódust.

A szakasz négy darab harmad akkora szakaszra osztását a megfelelően paraméterezett rekurzív metódushívások oldják meg az alábbi lépéseket követve:

Koch-görbe rajzolásának fázisai

A rekurzív rajzolást a koch() metódus végzi el, ahol a fraktál szabályának megfelelően szakaszharmadolás és a szükséges pontok koordinátáinak (szakaszok végpontjai) kiszámítása történik:

A Koch-görbének van néhány érdekes tulajdonsága:

  • kerülete minden rekurzív lépésben minden határon túl növekszik, azaz a végtelenhez tart,
  • területe véges, hiszen minden rekurzív lépésben belefér a háromszög köré írható körbe,
  • dimenziója tört, ~ 1,261859.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomra építő 29-36. Grafikus felhasználói felület alkalomhoz kötődik.

Fibonacci nap

Fibonacci nap

Fibonacci nap 2018A Fun Holidays – Fun, Wacky & Trivial Holidays weboldal sokféle különleges ünnepnapot listáz. Ezek leírása többnyire vicces, emlékezős, de néhány igazán érdekes, régi-régi hagyományt elevenít fel.

Ma van (november 23.) a Fibonacci nap. Fibonacci középkori matematikus volt, ő tette közismertté a Fibonacci-sorozat-ot. A (0), 1, 1, 2, 3, 5, 8, 13, 21, 34, sorozat igen népszerű azok közében is, akik programozást tanulnak. A sorozat első két eleme 1 és 1 (ha szükséges, akkor nulladik elemmel is dolgozhatunk), és minden további elem az előző két elem összege. Többféle történet is fűződik ehhez, talán az egyik legismertebb a nyúlpárok szaporodásához kötődik.

Honnan származik a Fibonacci nap? A mai nap hh.nn. formátumban 11.23. , és a számjegyek részei a Fibonacci-sorozatnak. Mindössze ennyi, ilyen egyszerű. 😉

A sorozat elemei könnyen előállíthatók néhány változó használatával, ha a kezdő programozó már ismeri a ciklust, mint algoritmikus építőelem – ez az iteratív megoldás. A rekurzív megoldás tipikus rossz megoldásként ismert, lássuk ennek Java megvalósítását:

Ha kiadnám a fenti Java forráskódot papíron ezt egy dolgozatban, zárthelyin, állásinterjú szakmai részén azzal a kérdéssel, hogy mit ír ki a program a képernyőre, akkor bizony sokan bajban lennének. Meg is történt ez már sokszor, tapasztalatból írom. A rekurzió első leszálló ágáig szinte mindenki eljut, de az ott induló első felszálló ágat követően sokan belezavarodnak a részlépések egymásutániságába. A végeredményt szinte mindenki tudja, de itt most arra helyezzük a hangsúlyt, hogy hogyan jutunk el odáig. Persze n=5-re fib(5)=5. Alig fordult még elő, hogy valaki hibátlanul leírta volna az alábbi eredményt:

A megoldás során – emlékeztetek arra, hogy ez atipikus megközelítés – sok-sok redundáns lépés történik. Hiszen például a fib(3)-at tudni kell a fib(4)-hez és a fib(5)-höz is, hiszen fib(4)=fib(2)+fib(3) és fib(5)=fib(3)+fib(4), valamint ebben az implementációban nincs semmilyen emlékezet (puffer, adatszerkezet), amivel a sok feleslegesnek vélhető számítást elkerülhetnénk.

Nyert ügye lehet annak, aki „fejben összerakja” az alábbi fát – akár dinamikusan, menet közben hozzáadva és törölve elemeket – és ebben navigálva (ezt bejárva) válaszolja meg a kérdést:

Fibonacci-sorozat-n=5

Az alábbi animáció segíthet a megértésben: 45 lépésben mutatja be az aktuális részlépést/részfeladatot (leszálló ág) és/vagy az aktuális részeredményt (felszálló ág):

Fibonacci-sorozat-n=5

A Fibonacci-sorozat többféleképpen kapcsolódik a természethez, természeti jelenséghez, növényekhez, állatokhoz (virágszirmok száma, levelek elfordulása, napraforgók magjai, fenyőtoboz pikkelyei, nautilus háza, aranymetszés, zenei hangolás, zeneművek tagolása), felhasználható algoritmusok futási idejének becsléséhez, fa adatszerkezetek építéséhez is. Az aranymetszésről megoszlanak a vélemények: vannak akik szinte mindenben ezt látják (művészet: festészet, szobrászat), mások módszeresen cáfolják ezt (például Falus Róbert: Az aranymetszés legendája, Magyar Könyvklub, 2001, második, javított kiadás, ISBN 963-547-332-X).

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomhoz kötődik.

Ki kinek a vezetője?

Organogram logó

HR-organogram-logoAz SQL lekérdezések újabb típusát adják a hierarchikus lekérdezések. Az Oracle adatbázis-szerver már régóta támogatja ezt a lehetőséget. A hierarchia legtöbbször valamilyen fa adatszerkezethez kötődik. Ezek természetesen nem közvetlenül tárolódnak egy normalizált, relációs adatbázisban, de az adatok közötti kapcsolat értelmezése során felépíthető rekurzív módon a fa struktúra.

Hasonló feladat: Organogram készítése, reflexióra építve. Érdemes összehasonlítani a kétféle szemléletmódot.

Ki kinek a vezetője?

Az Oracle HR sémában az EMPLOYEES és DEPARTMENTS táblák között kétirányú 1:N kapcsolat van. Egy EMPLOYEE_ID egyedi kulccsal azonosított alkalmazotthoz tartozik egy nem kötelező DEPARTMENT_ID külső kulcs az EMPLOYEES táblában. Egy kivétellel minden alkalmazott részleghez hozzárendelt.

Oracle HR séma

Egy DEPARTMENT_ID egyedi kulccsal azonosított részleghez tartozik egy nem kötelező MANAGER_ID külső kulcs a DEPARTMENTS táblában. Minden olyan részlegnek van vezetője, amelyikhez legalább egy alkalmazott hozzárendelt. A DEPARTMENTS táblában csak olyan MANAGER_ID szerepelhet, amelyik megtalálható az EMPLOYEES táblában EMPLOYEE_ID-ként. A „legfelsőbb” szinten lévő vezetőnek nincs vezetője.

Előfordulhat, hogy egy-egy részlegen belül többszintű hierarchiát találunk az organogramban, ha a részlegek helyett az alkalmazottak oldaláról közelítjük meg a problémát. Ekkor építhetünk arra, hogy az EMPLOYEES tábla saját magával is kapcsolatban áll (reflexió): egy MANAGER_ID-hez több EMPLOYEE_ID is tartozhat. Másképpen: egy adott vezetőnek több beosztottja is lehet.

A hierarchikus (rekurzív) lekérdező parancs

Ki kinek a vezetője? - Hierarchikus SQL lekérdező parancs

A lekérdező utasítást bele kell építeni egy Java kliensprogramba (MVC architekturális tervezési minta szerint a modell rétegbe), ami JDBC alapon kapcsolódik az Oracle adatbázis-szerver HR sémájához olyan felhasználó nevében, aki csatlakozhat és lekérdezhet. Meg kell tervezni és felügyelni kell a biztonságos kapcsolatot (kivételkezeléssel), annak életciklusát (nyit, lekérdez, zár), valamint gondoskodni kell az eredménytábla megjelenítéséről.

Az eredménytábla (részlet)

Ki kinek a vezetője? - Eredménytábla

A keletkező eredménytábla exportálható Excel-be (XLS, XLSX formátumokba). Az első vagy utolsó oszlop adatait feldolgozva könnyen készíthető egy dinamikus adatmodellel rendelkező, fa struktúrát megjeleníteni képes komponens/felület, ahol szabadon böngészhető a szervezeti hierarchia.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java adatbázis-kezelő tanfolyam 9-12. óra: Oracle HR séma elemzése, 13-16. óra: Konzolos kliensalkalmazás fejlesztése JDBC alapon, 1. rész, 33-36. óra: Grafikus kliensalkalmazás fejlesztése JDBC alapon, 2. rész alkalomhoz kapcsolódik.

Az SQL forráskód formázásához a Free Online SQL Formatter-t használtam.