Népesedési világnap

Népesedési világnap logó

Népesedési világnap logóAz ENSZ 1987-ben július 11-ét a népesedési világnappá (World Population Day) nyilvánította. Bolygónk lakossága aznap érte el az 5 milliárdot. További kerek számok voltak: 1999. október 12-én 6 milliárd, 2011. október 30-án 7 milliárd. További kerek számok várhatóak: 2023 – 8 milliárd, 2037 – 9 milliárd, 2057 – 10 milliárd. A KSH elemzése részletes elemzéseket közöl évről-évre a témában, például: 2019-ben, 2018-ban. A worldometer.info weboldalon folyamatosan frissülő kimutatások érhetők el a népességhez globálisan, valamint országonként is: például Magyarország aktuális népesedési adatai.

A népesedési világnap inspirált egy Java program megtervezésére és megírására. A swing GUI-s program megjeleníti a worldometer.info weboldalról kinyerhető adatok alapján régiónként (kontinensenként) az elérhető adatokat 1950-től 2020-ig az alábbiak szerint egy világtérképen.

Az elkészült program

Népesedési világnap Java program

Tervezés

Objektumorientált szemlélettel, MVC architekturális tervezési mintát követünk, angol nyelvű interfész, osztály, változó, objektum, metódus nevekkel. A projekt neve: WorldPopulation, a csomag neve: worldpopulation. Amit lehet, konstansként interfészbe (szeparálva) teszünk és az MVC rétegekhez kötődő osztályok implementálják. A modell minden évszámhoz tárolja a szükséges adatokat, mindezt egyetlen betöltéssel/letöltéssel éri el. A program kliensként hat régióra vonatkozó adatot gyűjt össze, alkalmazkodva a szerver adatforráshoz. A címsorban lévő összesített adat is elérhető közvetlenül a weboldalon, de a kisebb adatforgalom érdekében hasznos inkább a kliensben összesíteni. Mindössze egyetlen eseménykezelés szükséges: a csúszka beállításával megadott évszám alapján frissíteni kell a régiók címkéit és az ablak címsorát. Öröklődés hasznos a feladat megoldása során: egyrészt interfészek, másrészt osztályok között.

Interfészek

Az ősinterfész a WorldPopulationConstants, benne az évszám intervallum MIN_YEAR és MAX_YEAR határaival, valamint a megjeleníthető régiók neveivel tömbben: REGION_NAME_ARRAY. Két utódinterfész épül az ősre: ModelConstants és ViewConstants. Előbbi interfész az adatforráshoz kapcsolódik: URL_COMMON az URL eleje, URL_ARRAY az URL végei régiónként tömbben. Utóbbi interfész a megjelenítéshez kapcsolódik: WORLD_MAP_IMAGE a háttérkép annak WORLD_MAP_RECT méretével együtt, valamint a régiónkénti REGION_RECT_ARRAY téglalapok tömbje a kezdeti pozíciókkal/méretekkel, TITLE a sablon a program címsorához (frissítendő az évszámmal és az összesített népességgel). A megfelelő utódinterfészt mindig implementálja az MVC szerint hozzá illeszkedő osztály.

Osztályok

A belépési pont a WorldPopulation.java fájlban található.

Három összetartozó elemi adatot fog össze egybe a RegionData POJO, ezek name, year, population nevű rendre String, int, long típusú adatok. Például: Európa, 2020, 747643253. Tartalmaz két függvényt: getPopulation(), valamint toString(). Utóbbi HTML formátumban adja vissza a megjelenítendő adatokat.

A JLabel-ből származik az igényekhez alakított RegionLabel osztály. Ennek van előre megadott pozíciója, mérete, betűtípusa, betűmérete, sárga háttérszíne, piros kerete. Ezenkívül a téglalap átlátszó, valamint a benne megjelenő HTML tartalom vízszintesen középre igazított. Némi extra funkció, hogy egérrel megfogva – drag and drop – áthelyezhető, ami a MouseMotionListener egérmozgást figyelő interfész mouseDragged() metódusának felülírásával válik lehetővé. A mozgathatóságáért saját maga felel. Példaként közöljük az osztály teljes forráskódját:

A webről adatokat szerez és tárolja a Model osztály, a java.io és java.net csomagokra építve. Egy példa: a https://www.worldometers.info/world-population/europe-population/ oldal forrásából nyeri ki az osztály az alábbi adatokat:

Ezek parszolását követően elkészül egy optimálisnak tekinthető, generikus listákból álló regionListArray tömb adatszerkezet. A parszolás történhet egyszerű szövegkezeléssel vagy JSON feldolgozással is. Erre épülnek a konstruktorral és vezérlővel összehangoltan működő getter metódusok: getHTML(), getRegionList(), getRegionData(), getPopulation(). A JSON adatforrás feldolgozását most nem részletezzük, de hasonlóról blogoltunk már: Időjárás Budapesten.

A grafikus felhasználói felületet adja a JFrame utód View osztály. Három GUI komponensből áll: pnWorldMap – háttérkép JPanel, lbYear – kiválasztott/aktuális év JLabel, slYear – kiválasztható/görgethető aktuális év JSlider. Izgalmas megoldani egymásra/egymáson elhelyezni a komponenseket. Egy JLayeredPane komponens  DEFAULT_LAYER rétegére kerül a térképet tartalmazó háttérkép, majd a  PALETTE_LAYER rétegére kerül dinamikusan a hat  RegionLabel osztályú/típusú objektum. A csúszka komponens slYearStateChanged() eseménykezelő metódusa vezérlőként megszólítja a modell réteget és a visszakapott adatokkal frissíti a nézet réteget (a címsorban lévő összesítéssel együtt, ezres szeparátorokkal).

Ötlet továbbfejlesztésre

Hat különböző weboldal forráskódjából kell összegyűjteni a megjelenítendő adatokat. Ez 2020-ban régiónként 71 számot jelent és hat régió van. Érdemes lehet olyan adattárolást megvalósítani, amely csökkenti a szerverhez fordulások számát, illetve a letöltendő adatok mennyiségét. Hiszen a múltbeli évekhez kötődő historikus adatok nem változnak. Ha ezekre valamilyen formában a program emlékszik, akkor elegendő az utolsó tárolt évből kiindulva az aktuális évig évenként, régiónként lekérni mindössze 6, 12, 18… számot, a program utolsó futtatásának évéből kiindulva. Ez lényegesen kevesebb lenne, mint a jelenlegi 6*71 lekért szám. A koncepció kulcsszava: inkrementális adatfrissítés. Ha megvalósítjuk az ötletet, akkor figyelni kell arra, hogy az aktuális/utolsó évben az adatok akár másodpercenként is változhatnak.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik (ha a swing GUI-ra koncentrálunk és az adatok helyi fájlrendszerből elérhetők), és a Java EE szoftverfejlesztő tanfolyam tematikájához kapcsolódik (ha az adatokat közvetlenül a webről olvassuk).

Letöltés szimuláció

letöltés logó

letöltés logóLetöltési folyamatot szimulálunk. A paraméterek rugalmasan beállíthatóak. Előre beállított mennyiségű adatot, párhuzamos szálakon/folyamatokon keresztül töltünk le, miközben mérjük az eltelt időt. A folyamatok állapota lehet inaktív, aktív és befejezett. Az aktív folyamatok esetében megjelenő százalék fejezi ki, hogy a folyamat hol tart a rá jutó részfeladat végrehajtásával. Összesített formában követhetjük a hiányzó és a letöltött adat mennyiségét MB-onként és százalékosan is. A folyamat szimulációjához grafikus felületű Java kliensprogram készült, egyszerű GUI komponensekkel (nyomógomb, címke, folyamatindikátor, másképpen JButton, JLabel, JProgressBar swing komponensek).

Az alábbi animáció bemutatja a letöltés szimulációját:

letölés szimuláció

A konkrét paraméterek: 128 MB-nyi adatot töltünk le 256 párhuzamos szálon/folyamaton keresztül, így egy-egy részfeladat 0,5 MB-nyi adat letöltését jelenti. Minden értéket/mérőszámot egész számként ábrázolunk, akár százalékhoz tartozik, akár mértékegységként MB vagy s. A változások – és egyben a frissítés is – 5 ezredmásodpercként történnek a GUI-n.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni. A Java EE szoftverfejlesztő tanfolyamunkon, a szakmai modul 5-8. óra Szálkezelés, párhuzamosság alkalommal többféle elosztott stratégiát ismertetünk, és a 17-24. óra Socket és RMI alapú kommunikáció alkalommal pedig megvalósíthatjuk többféle protokoll szerint a hálózati kapcsolatot, letöltést/feltöltést.

Elosztott alkalmazások esetén többféleképpen is modellezhető és kialakítható a rendszer architektúrája. Elosztott lehet maga a hálózat, a számítási folyamat, az algoritmus. Elosztott objektumok kommunikálhatnak egyenrangúnak tekinthető P2P szerepkörben vagy szerver/kliens oldalon, és több dolog/elem/hardver/szoftver/komponens együttműködéseként is megvalósulhat elosztott alkalmazás. A hálózati kommunikáció folyamatát valamilyen protokoll határozza meg, amit minden komponens ismer és így meghatározott szabályrendszer szerint működik.

Hardver szinten elosztottak a többprocesszoros rendszerek. Szoftveresen elosztott például egy moduláris vállalatirányítási rendszer, illetve a mobilalkalmazások többsége. Tipikus háromrétegű webalkalmazás esetén külön szerver nyújtja az adatbázishoz kapcsolódó szolgáltatásokat, a felhasználó számítógépén található a böngészőben futó/megjelenő kliensprogram/weboldal és a kettő között a felhő rétegben lehet a funkcionálisan elosztott alkalmazáslogika (például validálás, titkosítás, tömörítés, autentikáció, autorizáció).

A feladat könnyen általánosítható, például:

  • Egy keresési feladatot oldjunk meg az állományrendszerben! Kereshetünk egy konkrét nevű fájlt, adott kiterjesztésű fájlt, joker karakterekkel paraméterezett nevű fájlt/mappát, adott méretű állományt, adott dátum előtt létrehozott fájlt… Az állományrendszer bejárása rekurzív módon történik. A gyökérben lévő mappánként külön, esetleg második szinten lévő mappánként külön indíthatók szálak, párhuzamos folyamatok. Ha egyetlen találat elegendő, akkor bármelyik szál pozitív visszajelzésére minden szál leállítható. A feladatnál nagy eséllyel nagyon különböző méretű mappákon és eltérő mélységű mappaszerkezeteken kell végighaladni, így erre érdemes lehet optimalizálni, de ez már nagyon más szintje ennek a problémának.
  • Active Directory szerkezetben keressünk elérhető nyomtatókat a hálózaton!
  • Elosztott számítási hálózatként működik/működött a SETI@home. Koncepciójának lényege, hogy egy hatalmas feladatot nem nagyon drága szuperszámítógépeken, hanem olcsó gépek ezrein, százezrein, vagy akár millióin végeztetjük el, amelyek jelentős szabad kapacitással (pl. processzoridővel, átmeneti tárhellyel) rendelkeznek és egyébként is csatlakoznak a világhálóra.
  • Hasonlóan elosztott működésű a torrent protokoll. A kliensek/szálak az állományokat több kisebb darabban/szeletben töltik le, természetesen párhuzamosítva. Minden csomópont megkeresi a hiányzó részhez a lehető leggyorsabb kapcsolatot, miközben saját maga is letöltésre kínálja fel a már letöltött fájldarabokat. A módszer nagyon jól beválik nagyméretű fájloknál, például videók esetében. Minél népszerűbb/keresettebb egy fájl, annál többen vesznek részt az elosztásában, ezáltal a letöltési folyamat gyorsabb, mintha mindenki egy központi szerverről töltené le ugyanazt (hiszen az informatikában minden korlátos, a sávszélesség is).
  • A képtömörítést végző algoritmusok is lehetnek elosztottak, ezáltal párhuzamosíthatóak. Például ha felosztjuk a képet 16*16-os méretű egymást nem átfedő részekre, akkor ezek egymástól függetlenül tömöríthetők.
  • A merevlemezek esetén korábban használatos defragmentáló szoftverek felhasználói felülete emlékeztet a mintafeladat ablakára.

Fontos szem előtt tartani, hogy a grafikus megjelenítés csupán a szimulációhoz tartozó – annak megértéséhez szükséges – reprezentáció, így teljesen független lehet a folyamatok valós működésétől.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Dr. Sheldon Cooper szólánc játéka

Sheldon szólánc kiemelt kép

Sheldon szólánc kiemelt képDr. Sheldon Cooper karakterét nem kell bemutatni. Az Agymenők (The Big Bang Theory) című sorozat 2. évad 5. epizódjának címe A vitatkozás nagymestere (The Euclid Alternative). Nagyon találó az epizód címe magyarul. Miközben Penny reggel Sheldont munkába viszi, Sheldon az autóban kémiai elemek nevéből álló szólánc játékával különösen Penny agyára megy (pedig a játékot Penny nyeri 😀):

A játék során Sheldon az alábbi kémiai elemeket mondja:

  • magyar nyelven: Hélium ↦ Mangán ↦ Neptúnium ↦ Magnézium ↦ Molibdén ↦ Nitrogén ↦ Nobélium ↦ Mendelévium
  • angol nyelven: Helium ↦ Mercury ↦ Ytterbium ↦ Molybdenum ↦ Magnesium ↦ Manganese ↦ Europium ↦ Mendelevium

Támogassuk meg ezt a játékot! Készítsünk olyan programot Java nyelven, ami segít(ene) felkészülni Sheldon szólánc játékára!

A szükséges lépések áttekintése

  • Gyűjtsük össze a kémiai elemek nevét magyar nyelven a Wikipédia – Kémiai elemek listája szócikkéből és rendezzük ábécé sorrendbe!
  • Építsük be az elemlistát a program adatmodelljébe!
  • Indítsuk el a lépésszámláló nulláról! Ha a lépésszámláló páros, akkor az ’A’ játékos, egyébként a ’B’ játékos lép.
  • Készítsük elő a játékmenet tárolására alkalmas adatszerkezetet, szöveget, listát!
  • Kezdetben kínáljuk fel a teljes elemlistát úgy, hogy mindig egy és csak egy legyen belőle kiválasztható!
  • A kiválasztást követően tároljuk el a játékmenetben az elemet, töröljük ezt az elemlistából, majd kínáljuk fel azoknak az elemeknek a listáját, amelyek kezdőbetűje megegyezik az előzőleg kiválasztott elem utolsó betűjével és növeljük meg a lépésszámlálót!
  • Amíg a felkínálható elemek listája nem üres, addig az előző lépést ismételjük meg!
  • A játék végén az nyert, aki a játékmenet utolsó elemét választotta ki. Írjuk ki a nevét és a lépésszámot!

A grafikus felületű megvalósítás képernyőképe rövid játékmenettel

Szólánc képernyőkép

Ötletek a megvalósításra és a továbbfejlesztésre

  • A program Java nyelven konzolos menükezeléssel, asztali alkalmazásként swing-esen többféle GUI komponens használatával és eseménykezeléssel, böngészőben futó JSP webalkalmazásként többféle űrlapmezővel, illetve HTML+CSS+JavaScript alapon is implementálható.
  • A kémiai elemek listája lecserélhető az angol nevekre. Ekkor figyeljünk arra, hogy a kis- és nagybetűket ne különböztessük meg az utolsó-első betű párosítása során.
  • Lehet a játék bármikor megszakítható, illetve a vége után újrakezdhető.
  • A program mérhetné a játék során az eltelt időt.
  • A program lehetne peer-to-peer vagy szerver-kliens elosztott és megvalósíthatna hálózatos kommunikációt.
  • A program mobil alkalmazásként is implementálható.

A bejegyzéshez tartozó teljes forráskódot – többféle változatban is – ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Többféleképpen is hozzájuthatunk az adatokhoz attól függően, hogy milyen előismeretekkel rendelkezünk a különböző tanfolyamainkon:

  • A Java SE szoftverfejlesztő tanfolyamon dolgozhatunk szövegtömbbel, generikus kollekcióval (listával/halmazzal), konzolos és swing-es változatot is készíthetünk. Ehhez a feladathoz objektumorientált alapok mindenképpen szükségesek. Kézzel előállított szövegfájlból olvasva (mentve a Wikipédia oldaláról a táblázatot) hozzájuthatunk a kémiai elemek nevéhez, amihez kivételkezelés is szükséges.
  • A Java EE szoftverfejlesztő tanfolyamon megvalósítható, hogy a program kivételkezeléssel hálózati kapcsolatot épít, majd közvetlenül olvassa és/vagy menti a Wikipédia HTML tartalmából a kémiai elemek nevét szövegfájlba vagy generikus kollekcióba, amivel a feladat visszavezethető az SE szemléletű megközelítésre. Böngészőben futó JSP és/vagy Servlet technológiára építő webalkalmazásként is megvalósítható a feladat.

KSH táblázatból dolgozunk

KSH-logo

KSH-logoA Központi Statisztikai Hivatal honlapján elérhető STADAT táblákból könnyen kinyerhetjük a nekünk szükséges adatokat. A témastruktúrába sorolt online és XLS exportként is böngészhető táblázatokban megtalálhatjuk logikusan csoportosítva összesítve az adatokat régiónként (megyénként), évenként, százalékosan. Az XLS fájlformátum Java nyelven a JExcel API-val hatékonyan feldolgozható. Lássunk erre egy példát!

Feladat

A KSH 2.1.2.35. táblázatából gyűjtsük ki a 19 magyar megyére + Budapestre vonatkozóan a gazdaságilag aktívak létszámát és az első évet alapnak tekintve adjuk meg évenként a változást százalékosan!

Tervezés

A KSH témastruktúrában a táblázat elérési útja:

  • 2. Társadalom,
  • 2.1. Munkaerőpiac,
  • 2.1.2. A munkaerőpiac alakulása Magyarországon (1998–2018) -> Területi adatok,
  • 2.1.2.35. A 15–64 éves népesség gazdasági aktivitása megyénként és régiónként (1998–2018)

Online böngészhető táblázat:
https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/mpal2_01_02_35.html.

Letölthető táblázat (XLS formátumban): https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/xls/h2_1_2_35.xls.

A táblázat A oszlopában szerepelnek a régiók, megyék, időszakok (vegyesen, szövegként) és a D oszlopában a gazdaságilag aktívak (ezer fő, valós számként). A fejlécet nem szabad feldolgozni. 1998-tól 2018-ig 546 sorból áll az adatsor. A csoportosítás 26 régiót és megyét tartalmaz, amiből a 6 régiót (például: Közép-Dunántúl) ki kell hagyni.

A megyékre vonatkozóan 440 sort kell feldolgozni. Ebből az első sor a megye (vagy Budapest) neve, a többi (2019-ben 21 db) sorban találhatók az adatok (időszak). Olyan algoritmusban érdemes gondolkodni, ami a jövőben is működik. Ha csoportváltást alkalmazunk, akkor nem számít, hogy megyénként minden évben egy sornyival több adat lesz majd. A KSH táblázatok szerkezete nagyon ritkán változik, így bátran írható rájuk testre szabott forráskód (ezeket nem kell évente frissíteni).

Az évenkénti változást százalékosan nem tartalmazza a táblázat, ezt nekünk kell kiszámítani. A valós számok formázását érdemes egységesíteni, például a gazdaságilag aktívak létszámát 3 tizedesre, a változást 2 tizedesre kerekítve.

A belső adatábrázolást érdemes átgondolni. Hasznos, ha az időszakhoz tartozó három összetartozó adatot egyetlen Data POJO-ba fogjuk össze ( String period, double active és double change). Ezeket generikus listába szervezve ( ArrayList<Data> list) könnyen hozzájuk rendelhető a megye ( String county) és ezek együtt alkotják a Region POJO-t. A Region és Data kapcsolati fokszáma: 1:N. 2019-ben N=21 .

Részlet a megoldásból

A JExcel API használatához a Java projekthez hozzá kell adni a jxl.jar fájlt. A XLS fájl olvasható közvetlenül a webről is, de egyszerűbb helyi fájlrendszerbe mentett változatból dolgozni ( ./files/h2_1_2_35.xls). A megyék nevében található ékezetes karakterek miatt ügyelni kell a megfelelő karakterkódolásra ( Cp1252). A munkafüzet azonosítását követően hivatkozni kell a feldolgozandó munkalapra ( 2.1.2.35.). Az adatfeldolgozás során kihagyott régiókat (kivételeket) érdemes listába gyűjteni ( skipRegionList). A csoportváltást a két egymásba ágyazott ciklus valósítja meg. Ügyelni kell az adatok formátumának ellenőrzésére.

Eredmények

Például Somogy megyére az alábbi adatokat kapjuk eredményként (XLS formátumban, Excel-be betöltve, tipikus háttérszín kiemeléssel: szélsőértékek a C oszlopban, negatív értékek a D oszlopban):

KSH-result

További programozható feladatok

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik (ha az XLS fájlt a helyi fájlrendszerből érjük el), és a Java EE szoftverfejlesztő tanfolyam tematikájához kapcsolódik (ha az XLS fájl tartalmát közvetlenül a webről olvassuk).

Multimédia az oktatásban 2019

Multimédia az oktatásban logó

MMO logoA Neumann János Számítógép-tudományi Társaság (NJSZT) „Multimédia az oktatásban” Szakosztály által – évente – szervezett XXV. Multimédia az oktatásban című nemzetközi konferencia az Ericsson Magyarország Kft. K+F Központjában került megrendezésre 2019. június 6-7-én.

A konferencia célja

  • elősegítse az oktatás, a kutatás és a fejlesztés különböző területein dolgozó szakemberek tapasztalatcseréjét és találkozását,
  • bemutatkozási lehetőséget adjon az oktatóknak, kutatóknak és PhD hallgatóknak az új kutatási eredmények széleskörű szakmai megismertetésére és megvitatására előadások, kiállítások és kiadványok segítségével.

21 témakörben hirdették meg az előadóknak a jelentkezési lehetőséget, köztük néhány hozzánk kötődő

  • multimédia alkalmazása,
  • mLearning/eLearning és környezete,
  • felhőalapú szolgáltatások,
  • multimédia és a tudományos kutatás összefonódása,
  • multimédiafejlesztések, eredmények, alkalmazások.

Letölthető a konferencia programja.

A plenáris előadásokról

Ez a 25. jubileumi rendezvény áttekintette a szakosztály eddigi tevékenységeit például a plenáris ülésen Dr. Berke József alapító tag, első szakosztályelnök „Multimédia az oktatásban szakosztály története” fényképes előadásával. Dr. Magyar Miklós professzor alapító tag, alelnök „Egy Baby Boomer rendhagyó gondolatai a multimédiáról”, című Skype-on keresztül tartott előadásával képet adott arról, hogy a „kortárs szemtanú az egymást követő generációkkal, nemzedékekkel együttműködve tapasztalhatta meg a változásokat, a fejlődés átalakulási szakaszainak történéseit”. Majd az elmúlt év kutatásairól, a szakma irányvonalairól, gyakorlati eredményeiről szóló előadások következtek két napon két-két szekcióban. Kerekasztal beszélgetés keretében a közeljövőben megvalósítandó felnőttkori kötetlen, önálló tanulásra szolgáló (multimédia) tananyagok minősítésének kidolgozandó rendszeréről beszélgettünk Dr. Elsayed Hassan, Dr. Gerő Péter, Dr. Seres György és Sulyok Tamás moderálásával.

MMO2019 résztvevők

A szekció-előadásokról

Már számos alkalommal részt vettem előadóként a nyár eleji MMO konferenciákon szakmai előadással, magyar és/vagy angol nyelvű cikkel, poszterrel az oktatói csapat tagjaival, illetve mentorált hallgatóimmal együtt. Legutóbb tavaly is, lásd Multimédia az oktatásban 2018.

2019-ben „A magyarországi felsőoktatásban oktatók és hallgatók e-eszközhasználati attitűdje – Egy félig strukturált interjús mintakutatás eredményei” címmel tartottam előadást 20 percben, amely a konferencia „Multimédia-fejlesztések, eredmények, alkalmazások bemutatása / mLearning, eLearning és környezete” szekciójába került.

Ahogy absztraktomban írtam, „Az előadásban a tanár–hallgató interjúalanyok e-learning attitűdjébe kapunk bepillantást annak kapcsán, hogy mit jelent számukra az e-learning, hogyan értelmezik, mi tartozik az elearning kifejezés ernyője alá? Tanítási/tanulási munkájuk során milyen arányban használnak e-eszközöket? Milyen e-eszközöket és miért, hogyan használnak? Hogyan fejlesztik e-eszköztárukat? Az e-elemek tanításba bevonása hogyan hat a hallgatói motivációra és eredményekre a tanárok és a hallgatók szerint? Ha nem lennének e-eszközök, mi hiányozna számukra a leginkább? Melyik, miért és mennyire fontos a hallgatók és a tanárok számára a következők közül: tananyag, tanári magyarázat, tudományos alapok, trendiség? A kutatás alapja lehet egy széleskörű, nagy létszámú magyarországi és határon túli tanári–hallgatói populációkat vizsgáló kvantitatív kutatásnak.”

Mentorált hallgatóim/volt hallgatóim kiváló előadásokat tartottak. Öt díjat nyertek el a már második évben meghirdetett szakdolgozatok és TDK-dolgozatok versenyben, illetve szekcióikban tartott előadásukkal, a konferencia-kiadványban megjelent cikkükkel.

Vidovenyecz Zsolt, volt konzultáltam, barátom idén is elhozta „utazó kiállítás” keretében gyűjteménye egy részét, amelyhez kapcsolódva „A magyar számítástechnika hőskorának „leg”-jei” címmel tartott tárlatvezetést. Virtuális múzeuma a https://www.holdcomputers.com/-on tekinthető meg.

MMO2019 Régi magyar számítógépek kiállítás, Hungarian Old Computers kiállítás

Kaczur Sándor kolléga minden résztvevő számára érdekes multimédiás előadást tartott az MMO 2019 konferencián „Térképek dinamikus ábrázolása Google Charts, Java és JavaScript eszközökkel” címmel. Ez az előadás a „Multimédia és a tudományos kutatás összefonódása/ Multimédiafejlesztések, eredmények, alkalmazások bemutatása” szekcióba került.

„A Google Charts egy weblapokba beágyazható, JavaScript-re épülő keretrendszer/példatár, amely kiválóan használható az oktatásban úgy, hogy különféle adatforrásból származó – vagy dinamikusan előállított – adatokból egyszerű, látványos, weblapokon könnyen megjeleníthető grafikus objektumokat hozunk létre. A hozzá kapcsolódó felhő alapú szolgáltatások ingyenes és fizetős formában is rendelkezésre állnak. Az ismertetett esettanulmány egy hálózatos Java projekt, amely webről összegyűjtött adatok alapján, többféle Google Charts objektumot állít elő. A termék JavaScript-re épülő weboldalak sokasága, amely tipikus felhasználói igényeket/követelményeket kielégíthet. A megvalósítás kivételkezelést alkalmaz, HTML és JSON tartalmat olvas és generál, valamint elvégzi/elvégezteti az adatok térképen való megjelenítéséhez szükséges geokódolást. Az előadás ismerteti a specifikáció és a tervezés lépéseit, az implementációt, a tesztelést, valamint továbbfejlesztési javaslatokat is ad.” – írja Sándor absztraktjában.

Sándor előadásának prezentációját ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Sándor előadásának témája a Java EE szoftverfejlesztő tanfolyam 1–4. óra: Elosztott alkalmazások, webszolgáltatások és 13–16. óra: JSON feldolgozás alkalmaihoz kapcsolódik.

A fotópályázatról

Az MMO Szakosztály által meghirdetett fotópályázaton Táj kategóriában Szűcs Tibor különdíjban részesült Pirkadat című pályamunkájával:

Az MMO Szakosztály által meghirdetett fotópályázaton Táj kategóriában Szűcs Tibor különdíjban részesült Pirkadat című pályamunkájával

„A fotó 2018. július 2-án készült, Japán legmagasabb hegyén/vulkánján a Fujin. Július elején a napfelkelte nagyjából 4 órára esik, ám már fél órával korábban elkezd világosodni az égbolt alja, és a napfelkelte nagyjából egy órán át nyújt számunkra fényekben gazdag izgalmakat. A Fujiról fontos megemlíteni, hogy sok esetben mágnesként vonzza a felhőket. Nekünk mázlink volt. Nem is kicsi, ugyanis végig csillagos ég alatt másztunk, a napfelkelte felhőmentes volt, ám miután leértünk a hegy lábához, az egész vulkán felhőbe öltözött.

A terv az volt, hogy éjszaka felmászunk a vulkán peremére, majd a keleti oldalon megvárjuk a napfelkeltét, hiszen a felkelő nap országának legmagasabb pontjáról megnézni a felkelő napot meglehetősen vagányul hangzik. De ott fent lenni nem csak egy menő gondolat beteljesedése, hanem olyan élmény, melyet mindenkinek látnia kellene. Egyetlen baj van vele: elkezd a nap felkelni, aztán a következő pillanatban huss, már magasan jár. Természetesen ha nem is a szó szoros értelmében vett pillanatról van szó, de azért a kb. 10 percnyi páratlanul csodás élményért – amíg a nap felbukkan a horizonton – megéri hat órán keresztül hegyet mászni – a metsző szélben és közel zéró fokos hőmérsékletben fagyoskodni -, valamint kihagyni az éjszakai alvást, és másnap kókadozni.

Ebbe a kb. 10 percbe kell belezsúfolni mindent, az egyszerű emlékfotót, a pillanatról készült kiváló képeket, és természetesen a napfelkeltében elmerengeni. Nem egyszerű, mindenesetre mozgalmas, izgalmas, lenyűgöző, szívbe markoló és legfőképpen egy életre szóló élmény.” – írja a fényképről Tibor.