Doktoranduszok programoznak – újratöltve

it-tanfolyam.hu doktoranduszok programoznak

it-tanfolyam.hu doktoranduszok programoznakSaját doktorandusz csoporttársaimmal én is többször beszélgettem már arról – ahogyan Sándor is tette 2018-ban –, hogyan tudnák/tudják használni a programozás eszköztárát, módszereit, lehetőségeit saját kutatási munkájukban, beépítve a kutatási folyamat egyes lépéseibe, illetve disszertációjuk elkészítésébe.

A 7 fős csoportban mindenkinek más az alapvégzettsége, így szoftverfejlesztéshez, programozáshoz közös szókincs és terminológia haladó szinten természetesen nincs, viszont közös bennünk, hogy mindannyian alkotunk különféle modelleket és elemzünk adatokat. A csoport teljesen inhomogén, több szempontból is: ki melyik évfolyamot végzi, hol tart a kutatómunkájában, vannak-e ipari kapcsolatai, nappali vagy levelező képzésben végzi tanulmányait és persze ki mikor ér rá.

Különféle modelleket alkotunk

  • a mérnökök, fizikusok, geográfusok, biológusok többféle kísérletet végeznek el, szimulációkat terveznek és futtatnak, mérőeszközöket és műszereket használnak,
  • az informatikusok különböző matematikai eszközöket alkalmazva objektumorientált – vagy másféle – modellezést végeznek, szoftvereket terveznek, javítanak, újraírnak.

Adatokat is elemzünk, ki-ki előképzettségének megfelelően

  • kérdőívező szoftverekből exportálva valamit,
  • Excel munkalapokon, függvényekkel, adatbázis-kezelő funkciókkal, kimutatásokkal (Pivot táblák),
  • különböző fájlformátumokkal (CSV, XML, JSON, egyedi) dolgozunk és konvertálunk A-ból B-be,
  • távoli adatbázisokhoz, felhőbeli adattárházakhoz csatlakozunk, lekérdezünk és kapunk valamilyen – többnyire szabványos – adathalmazt,
  • matematikai, statisztikai szoftvereket használunk, például: MATLAB, Derive, Maple, SPSS.

Az öt évvel ezelőtti tematikát újragondoltuk. Kérdőívben felmértük a csoporttársak koncepcionális és konkrét igényeit. Más doktori iskolák hallgatói közül is toboroztunk. Ehhez kötődően köszönjük a DOSZ segítségét. Ezek alapján összeállítottunk egy olyan 3 részből álló tematikát, ami mindannyiunk számára hasznos. A 72 óra három 24 órás modulból áll: Java programozás, MATLAB programrendszer, mesterséges intelligencia.

Java programozás modul

  • 1-6. óra: Objektumorientált modellezés, MVC rétegek, algoritmus- és eseményvezérelt programozás
  • 7-12. óra: Fájlkezelés és szövegfeldolgozás (XLS, CSV, XML, JSON formátumú adatok írása, olvasása, feldolgozása), helyi és távoli adatforrásból
  • 13-18. óra: Adatbázis-kezelés JDBC alapon (SQL parancsok, CRUD műveletek, hierarchikus lekérdezések), helyi és távoli adatforrásból, natív módon és készen kapott API-kkal
  • 19-24. óra: Komplex adatfeldolgozási feladatok megoldása programozási tételek használatával, egyszerű statisztikai funkciók implementálásával

MATLAB programrendszer modul

  • 1-6. óra: Bevezetés az MATLAB nyelvbe (R2012 vs. R2022), utasításkészlet, vektorok, mátrixok, szkriptek, függvények, grafika
  • 7-12. óra: Szimulációk tervezése és készítése, numerikus módszerek áttekintése, algoritmizálása, tesztelés, analitikus megoldás, egyenletek megoldása
  • 13-18. óra: Adatok importálása helyi és távoli adatforrásból is, fájlkezelés: szövegfájlok, Excel-fájlok, import, feldolgozás, export, statisztikai alapok
  • 19-24. óra: Statisztikai próbák (illeszkedés- és függetlenség vizsgálata), hisztogramok készítése, differenciálegyenletek megoldása

Mesterséges intelligencia modul

  • 1-6. óra: Klasszikus és újabb megközelítések, alap AI funkcionalitás, megerősítéses és gépi tanulás lehetőségei és korlátai, OpenAI GPT nyelvi modell
  • 7-12. óra: Általános csevegés lehetőségei, korlátai, hasznos tanácsok; csevegés fájlok (szöveg, multimédia) tartalmáról; generatív AI funkciói; kép, ábra, grafikon, térkép, hang, animáció, videó generálása és ezek tömeges feldolgozása; programozási tételek alkalmazása multimédia analitikával együtt
  • 13-18. óra: Statisztikai adatok elemzése AI eszközökkel, automatikus tételbizonyítás AI eszközökkel, gráfelméleti kérdések kontra AI, hatékonysághoz kötődő kérdések AI eszközök esetén
  • 19-24. óra: Objektum- és aspektusorientált tervezés AI eszközökkel, kutatómunkát támogató AI eszközök

Mivel mindenki doktorandusz a csoportban, így a különböző MSc-s alapvégzettsége ellenére mindannyiunknak vannak strukturális programozáshoz kötődő alapismeretei, valamint adatok elemzéséhez szükséges elméleti matematikai/statisztikai alapjai.

A csoport órái szeptembertől decemberig, szombatonként zajlottak. Sándor tartotta a 24 órás Java programozás modult. Ez nagyban lefedi a Java SE szoftverfejlesztő tanfolyamunk tematikáját és kapcsolódik a Java EE szoftverfejlesztő tanfolyamunk és a Java adatbázis-kezelő tanfolyamunk tematikájához is. Én tartottam a 24 órás MATLAB programrendszer modult. Ketten közösen tartottuk a 24 órás Mesterséges intelligencia modult. Igazán tartalmas őszi időszakot jelentett számunkra ez a 12 szombat. Mindenki elvitte, amit beletett.

A koncepciót once-in-a-lifetime jelleggel dolgoztuk ki 🙂 (újratöltve) azzal a fő szándékkal, hogy hatékonyabban működjünk együtt a jövőben. A visszajelzések alapján bátran állíthatom, hogy ez gördülékenyen fog menni. Egyben köszönöm mindenkinek az aktív, konstruktív részvételt.

Táblázatos hőtérkép készítése

Ebben a projektben táblázatos hőtérképet készítünk Java és JS nyelveken. Java programot készítünk az adatok véletlenszerű előállításához és a sablon alapján történő HTML fájl generálásához. JavaScript program fogja a grafikont megjeleníteni a weboldalon. Tervezünk, kódolunk, tesztelünk. Lássunk hozzá!

Mi az a hőtérkép?

A hőtérkép (heatmap) olyan grafikon, amely könnyen áttekinthetővé tesz nagy mennyiségű adatot úgy, hogy kategorizál/csoportosít és az előfordulások tartományai alapján különböző színeket rendel azokhoz. A szín hozzárendelése egy intervallumból történik. Például a világosabb a ritkább, a sötétedő szín az egyre gyakoribb értékeket jelenti. A tipikus hőtérkép kétdimenziós és az előforduló adatok mennyiségét, azok arányait, eloszlását, szóródását (nem szórását), gyakoriságát jeleníti meg. A hőtérkép gyors vizuális összefoglalást, áttekintést biztosít. A projekt során sorokból és oszlopokból álló táblázatos hőtérképet készítünk.

A táblázatos hőtérkép nem összekeverendő a következő két megközelítéssel:

  • Ha az adatok lokációhoz kötődnek és térképen jelennek meg, akkor azt tematikus térképnek nevezzük. Erről már blogoltam korábban, lásd: Céline Dion – Courage World Tour, amikor az énekesnő USA-beli államokban előforduló koncertjeinek számát jelenítettem meg. Ehhez hasonlók az amerikai elnökválasztás során használt tematikus térképek, amelyek a(z egyes) jelöltek szavazatainak arányát ábrázolják meg szintén államonként.
  • Ha az adatok webergonómiához, bannervaksághoz, inkább fókuszban lévő tartalmakhoz, felhasználói élmény (UX) tervezéshez kötődnek, akkor a weboldal grafikus elemeihez (azok pozíciója) alapján rendelünk hozzá színeket attól függően, hogy mennyi ideig nézi azt a felhasználó.

Mi a feladat (koncepcionálisan)?

Adott egy konditerem, amely hétköznapokon egy megadott időintervallumban használható. Ehhez kulcsot kell felvenni és leadni. Az első belépő nyitja és az utolsó távozó zárja az ajtót. A teremhasználat offline nyilvántartott, így nehézkes bármiféle kimutatás, statisztika. A „menet közbeni” jövés-menést nem tudjuk követni. Természetesen adott számos szabály (felelősség, biztonság, balesetvédelem, létszámkorlát), amit most nem részletezek.

Elhelyezünk az ajtó mellett, belülről egy belépéshez és egy távozáshoz tartozó QR kódot. Készítünk egy egyszerű mobil alkalmazást és megkérjük a konditermek használóit, hogy belépéskor és távozáskor „csekkoljanak”. Anonim gyűjtjük a belépések és távozások időpontját (valahol egy szerveren, bármilyen fájlban, adatbázisban).

A konditermek használatára vonatkozó összesített adatokat könnyen átlátható módon szeretnénk weboldalon megjeleníteni: heti bontásban, a nyitva tartás időszakát órás blokkokra bontva az igénybevételtől függően jelenjenek meg az adatok táblázatos hőtérképen.

Ez az állapot átmeneti. Segítheti a konditermekbe tervezett – egyéni használattól független – események ütemezését. Ezeket akkor lenne célszerű időzíteni, amikor nem, alig, vagy kevésbé használt, foglalt az adott konditerem. A továbbfejlesztés következő állapotában könnyen lecserélhető a QR kód RFID alapú proximity kártyára, proxy kulcstartóra: először csak a jelenlét nyilvántartásához, később akár az ajtó nyitásához is.

Mit valósítunk meg mindebből Java nyelven?

Egyetlen konditeremre fókuszálunk. A hétköznaponként nyitva tartás legyen 16 órától 21 óráig. Aki edzésre jön, véletlenszerűen 20 és 40 perc közötti időszakot tölt a konditeremben. 16 órától lehet belépni. Az utolsó belépés 20:40-kor lehet (érdemes). 21 órakor mindenki elhagyja a konditermet. Nem fordul elő, hogy valaki nem jelzi a belépését vagy a távozását. Mivel anonim a nyilvántartás, így elegendő a dátum/időhöz, időbélyeghez egyetlen állapotot tárolni: be vagy ki. Valaki belépett nyitáskor vagy valamikor utána, majd távozott 20-40 perccel később, de legfeljebb záráskor.

A szükséges adatokat véletlenszerűen állítjuk elő. Egy hétre vonatkozó adatokat generálunk. Ezek a fenti paramétereknek megfelelő, összetartozó belépéshez és távozáshoz köthető időpontok. Kiegészítve a napok ciklusban való léptetésével hétfőtől péntekig. Az adatokat feldolgozva, összegyűjtve, csoportosítva, kategorizálva olyan (kimeneti) formátumra alakítjuk, amely kompatibilis a táblázatos hőtérkép adatmodelljével (bemenetével). Mindez Java nyelven valósul meg.

Mi történik JavaScript nyelven?

A webes megjelenítéshez szükséges egy HTML fájl, amelyben beágyazva található meg egy téglalap alakú területként megjelenő táblázatos hőtérkép. Ez sokféleképpen testre szabható: adható hozzá felirat, beállítható a sorokhoz és oszlopokhoz tartozó szöveg és a táblázat celláiban megjelenő értékek, adott a lebegő, az egér kurzor helyzetétől függő – cellánként különböző – jelmagyarázat, és persze mindennek van formátuma (betűtípus, méret, szín, igazítás, kitöltés). A fix, adatoktól nem függő beállításokat tartalmazó weboldalt sablonként elkészítjük. Mindez JavaScript nyelven történik. Ezután Java program a weboldal sablonját kiegészíti (cseréli, behelyettesíti, feltölti) a szükséges adatokkal.

Hogyan alakul az időintervallumok átfedése?

A konditerem használatának alakulását követjük, amihez táblázatos hőtérképet készítünk. Ehhez a nyitva tartás időintervallumát órás blokkokra bontjuk. Blokkonként összesítjük a jelenlétet, azaz megszámoljuk, hogy éppen akkor hányan veszik igénybe a konditermet, hányan vannak jelen/benn.

A konkrét paraméterektől függően az alábbi képen látható 3 eset egyike fordulhat elő. A és B jelöli az órás blokk elejét és végén, tehát ez 60 perces intervallum. Tarthat például: 16:00:00-16:59:59-ig. X és Y jelöli a jelenlét intervallumát, azaz a belépés és távozás időpontjait. Ez 20 és 40 perc között alakul. Haladjunk balról jobbra az ábrán.

Az első esetben ugyanarra az órára esik a belépés és a távozás. Ez az eset egyértelmű. A másik két esetben átfedés van több órás blokk között, mert különböző órára esik a belépés és a távozás. El kell dönteni, hogy ekkor hogyan összesítjük a jelenlétet. Válasszunk az alábbi két módszer közül:

  • Az első módszer szerint mindkét órához – ahol átfedés van – összesítjük a jelenlétet 1-1 főként, hiszen ha nem is végig, de jelen volt mindkét órás blokkban. Például: egy 16:50:00-17:20:00 jelenlétet a 16 és 17 órás blokkban is figyelembe veszünk.
  • A második módszer szerint időarányosan tesszük mindezt, azaz súlyozunk aszerint, hogy milyen hosszú jelenlét esik az egymást követő órákban. Például: egy 16:50:00-17:20:00 jelenlétet a 16 órás blokk esetében egyharmad, a 17 órás blokk esetében kétharmad a jelenlét adott órára eső aránya, súlya.

Az első módszert valósítjuk meg. Ez a döntés jelentősen befolyásolja, hogyan kell értelmezni később az elkészült táblázatos hőtérképet.

Objektumorientált tervezés

A koncepcionális terv alapján modellezünk. A szükséges adatok tárolására és alapfunkcióira fókuszálunk. Az osztály tárolja az összetartozó adatokat és megvalósít rajtuk értelmezhető műveleteket. Az időintervallum/időtartam kezelését a Duration ősosztály oldja meg. Tárolja a start és stop – naptól független időpontokat tároló – adatok és a rájuk vonatkozó FORMAT – megjelenítéshez kötődő – konstanst. Biztosítja a szükséges műveleteket: konstruktor, getterek, megvalósítja az időintervallumok átfedését az isOverlapped() függvénnyel, valamint ad szöveges reprezentációt a toString() függvénnyel. Az ősosztályból öröklődik az utódosztály. A DurationMap osztály a naptól független időpontokat kibővíti a hozzájuk tartozó day nappal, valamint képes tárolni az összesített, megszámolt jelenlétet a count változóban. Részt vesz a megszámolás folyamatában azzal, hogy lépésenként meghívható az  incrementCount() eljárása.

A java.time csomagbeli LocalTime osztály képes a dátumtól független, napon belüli időpont tárolására és biztosít néhány alapvető funkciót a kezelésükre. Az adattárolás a napon belül eltelt időn alapul és nekünk (bőven) elegendő a másodperc alapú megjelenítés. A DateTimeFormatter alkalmas ezen időpontok formátumának tárolására, például óó:pp:mm alakban.

A Duration osztályból annyi objektum készül, ahány jelenlét adódik véletlenszerűen. Akár több száz is lehet. A DurationMap  osztályból generált objektumok száma jóval kevesebb. Heti 5 napra, napi 5 órás blokkra 25 db készül belőle.

A vezérléshez kötődő osztály tervezését nem részletezem.

Íme a Java forráskód

A Java forráskód minden megtervezett funkciót megvalósít, támogatva a koncepciót. Most nem részletezem a működését.

A véletlenszerűen előállított adatok

A lista görgethető:

A weboldal sablonja

HTML és JavaScript nyelvű forráskód vegyesen. A Java program a fájl 31. sorában lévő ##HEATMAP_DATA## szöveget cseréli le a táblázatos hőtérkép megjelenítéséhez szükséges véletlenszerűen előállított adatokra.

További részletekért, beállításra vonatkozó, testre szabási lehetőségekért érdemes tanulmányozni az AnyChart dokumentáció Heat Map Chart fejezetét.

Az eredmény

Az előállított weboldalt böngészőben megjelenítve ezt kaphatjuk eredményként (vagy a véletlenszerűen generált adatoktól függően hasonlót):

A táblázatos hőtérkép hasznos eszköz. Elemezve könnyen döntéseket hozhatunk a koncepcionális tervezés során vázoltak alapján.

Továbbfejlesztési lehetőségek

  • Lehetne több konditerem is. Ekkor rögtön felmerül az összehasonlítás lehetősége, egyben igénye is.
  • Lehetne hétköznaponként eltérő a konditerem nyitva tartása.
  • Az időpontok kezelési precíz. Egy másodpercen múlik, hogy nem fedik át egymást. Az időpontok megjelenítése lehetne óó:pp alapú is.
  • Az időintervallumok jelenleg állandóak, mindig 1 órásak. Könnyen megoldható lenne, hogy dinamikusak legyenek: például a népszerűbb időszakok felbonthatók lennének két 30 perces blokkra. A népszerűség értelmezhető minden nap (héten) másképp. Egyszerű képlettel: átlag felett, medián felett.
  • Általánosíthatnánk a létesítménygazdálkodáshoz kötődő erőforrást nem (feltétlenül) helyhez kötött, mozgatható, kölcsönözhető eszközökre is: hangszer, projektor, stúdió felszerelés.
  • Másképpen valósulna meg az adatgyűjtés, ha egyetlen QR kód állna rendelkezésre és back-end helyett a „mobil alkalmazás emlékezne” a belépésre és távozásra. Ez jelentheti legalább az aznapi adatokat, de tárolható historikusan is.
  • Hibát is kellene, lehetne kezelni. Például a kiléptetés lehetne automatikus a nyitva tartás végén. A jelenlét igazából igaz-hamis állapot: ha eddig hamis volt és történt valami, akkor igaz lesz és fordítva. Ha van mögötte állapotmegőrző emlékezet (mivel programozunk, így nyilvánvalóan azonnal objektumra gondolunk, vagy annak valamilyen fájlba vagy adatbázisba történő leképezésére).
  • A nyilvántartás könnyen megvalósítható személy hozzárendelésével, azaz lehetne nem anonim is a jelenlét.
  • Egymást átfedő időpontok esetén (ha nincsenek a hosszukra vonatkozó korlátozó feltételek) általánosítva 6 eset fordulhat elő. Például ha a jelenlét lehetne 60 percnél hosszabb, de 120 percnél rövidebb is, akkor nem lenne elegendő a fenti 3 esetet kezelni a jelenlét összesítése során.
  • Valósítsuk meg az időintervallumok átfedésénél bemutatott második – időarányos – módszert!
  • A napi jelenlét 20 fővel valósul meg a programban. Lehetne ez a paraméter is véletlenszerű, például 15-30 fő között, vagy esetleg népszerűbb a péntek.
  • Jelenleg a táblázatos hőtérkép statikus. Csak a (befejezett egész heti) múltbeli adatokat tudja megjeleníteni. Az aktuális, jelenlegi állapothoz szinkronizáció, ütemezés kell. Óránként (a blokkok végén automatizáltan), de akár 5 percenként is aktualizálható a hőtérkép.
  • A táblázatos hőtérkép megjelenítése önálló weboldal helyett beágyazható widget felületén is történhet.
  • Többféleképpen is készítettünk már grafikonokat, íme néhány a szakmai blogunkból: Kockadobás kliens-szerver alkalmazás, Sankey-diagram készítése, JFreeChart grafikon készítése.

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A projektfeladat – attól függően, milyen szinten valósítjuk meg – kapcsolódhat több tanfolyamunk tematikájához. A fenti forráskód a Java SE szoftverfejlesztő tanfolyam 17-28. óra: Objektumorientált programozás és a 37-44. óra Fájlkezelés alkalmaihoz kötődik. Ha többrétegű, elosztott alkalmazásként valósítjuk meg, akkor a Java EE szoftverfejlesztő tanfolyam a 9-16. óra: XML és JSON feldolgozás, dinamikusan generált weboldalba beépítve a 33-40. óra: Java Server Pages alkalmaihoz kapcsolódik. Ha fájlok helyett egyszerű adatbázist használnánk, akkor a Java SE szoftverfejlesztő tanfolyam 45-52. óra: Adatbázis-kezelés JDBC alapon, ha objektumrelációs leképezéssel oldanánk meg, akkor a Java EE szoftverfejlesztő tanfolyam 25-32. óra: Adatbázis-kezelés JPA alapon alkalmakhoz kötődhet.

Beszámoló: it-tanfolyam.hu STEM nyári tábor 2023

A STEM mozaikszó eléggé közismert: a tudományos-technológiai tudományágakat (természettudomány, technológia, mérnöki tudomány és matematika) foglalja egybe, interdiszciplináris megközelítésben. A STEM területén való elmélyedés során a hangsúly nem a mit tanulunk/tanítunk, hanem inkább a hogyan tanulunk/tanítunk. Nem azonnal ad kézzel fogható válaszokat, de kitartó próbálkozással – saját élménnyel – elérhető az eredmény.

Az it-tanfolyam.hu oktatói csapata 2023-ban először hirdetett STEM nyári tábort. Erről számolunk be röviden ebben a blog bejegyzésben. Tervezzük, hogy a jövőben rendszeresen fogunk szervezni STEM nyári tábort.

A STEM nyári tábor koncepciója

2023. nyarán 4 turnusban hirdettünk programozás fókuszú STEM nyári tábort:

  • 1. turnus: július 3-7-ig,
  • 2. turnus: július 10-14-ig,
  • 3. turnus: július 17-21-ig,
  • 4. turnus: július 24-28-ig.

Előzetes tudás- és igényfelmérést végeztünk, így alakítottunk ki 3 db csoportot, ezek: Java kezdő, Python kezdő, Python haladó. A kiinduló célcsoportot tanfolyamaink karrierváltó hallgatóinak gyermekei jelentették, akik mellé toboroztunk még. A korosztály a 16-20 éves diákok voltak a 11-14. évfolyamról. A 11-12. évfolyamosok közül sokan informatika, digitális kultúra érettségi előkészítő fakultációra jelentkeztek, jártak, járnak és ebből érettségiznek/érettségiztek. A már korábban érettségizett 13-14. évfolyamosok körülbelül fele az OKJ utód szakmajegyzékhez tartozó szakképzésben tanult.

Mindegyik turnus azonos tematikával valósult meg. Turnusonként 3 db párhuzamos, 10-12 fős csoportokat indítottunk. Voltak közös elméleti programok, szakmai kirándulás, illetve külön-külön Java és Python nyelven megvalósuló gyakorlati programok, valamint projektbemutatóra is sor került. Igyekeztünk érinteni sokféle STEM területet: fizika, kémia, biológia, csillagászat, térinformatika, mesterséges intelligencia, szimuláció, játékprogramok, matematika, orvostudomány; mindegyiket a programozáshoz kapcsolva. Végeztünk tervezést, kódolást, tesztelést is. Belefért némi pályaorientáció is.

A STEM nyári tábor órarendje

Turnusonként 4 oktató kollégával és vendégelőadókkal hétfőtől-péntekig minden nap 8 és 18 óra között biztosítottuk a jelenlétet, felügyeletet. 40 órában szakmai programokat (elmélet+gyakorlat) kínáltunk. Reggelenként és késő délutánonként 1-1 órában offline, egyéni vagy csoportos játékok voltak kipróbálhatók. Ez mindösszesen 50 órát jelentett. Délelőttönként 20, 30 és 60 perces programokat terveztünk, délutánonként 120 és 240 perceseket. Szerdára szakmai kirándulást, gyárlátogatást ütemeztünk be. Íme az órarend áttekintő formában:

Íme az órarend naponként lapozható formában, benne a részletekkel:

Előzetes tapasztalataink

Előzetes tapasztalatainkat több forrásból merítettük, inspirálódtunk:

Köszönetnyilvánítás

Köszönjük résztvevő diákjainknak az aktivitást, a lelkesedést, a sok-sok elgondolkodtató kérdést, az offline kapott/szerzett élményeket, a pozitív visszajelzéseket.

Szeretnék köszönetet mondani együttműködő partnereinknek: LEGO Manufacturing Kft., REGIO Játékkereskedelmi Kft., Revolt Kereskedelmi Kft., Pannon Kincstár Humán Szakképző Központ.

Végül szeretnék köszönetet mondani minden oktató kollégámnak konstruktív részvételüként, kitartásukért a projekt teljes életciklusában. A tervezési, a szponzorszerző, a promóciós és a megvalósítási szakaszokban egyaránt 2023. április elejétől július végéig. Kiemelem korábbi és az aktuális projekthez kötődő tananyagfejlesztési tevékenységüket. A sikeresen lezárt projektünket augusztusban kipihenjük. 😉

Sankey-diagram készítése

A Sankey-diagram alkalmas kétféle adatsor közötti N:M fokszámú kapcsolat, összefüggés és a köztes átmenet ábrázolására. Hangsúlyozza a fő átvitelt vagy áramlatokat egy rendszeren belül. Az áramlás irányát nyíllal szemlélteti és az áramlatok szélessége arányos az áramlási mennyiségekkel.

Feladat

Jelenítsük meg HTML formátumú weboldalként a magyarországi régiókban a foglalkoztatottak számát nemzetgazdasági szektorok szerint a KSH 2018-as adatsora alapján! Automatizáljuk egy Java programmal úgy a feladatot, hogy az év paraméterként megadható legyen!

Tervezés

A KSH témastruktúrában a táblázat elérési útja:

  • 5. Területi adatok,
  • 5.1. A munkaerő-piaci tendenciák Magyarország régióiban,
  • 5.1.3. A foglalkoztatottak száma nemzetgazdasági szektorok szerint, nemenként (2008–)

Online böngészhető táblázat:
https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/h_qlf017.html

Letölthető táblázat (XLS formátumban):
https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/xls/h5_1_3.xls

A táblázatban lévő adatforrás szükséges része látható az ábrán:

KSH adatforrás Sankey-diagramhoz

A táblázatban a régiók az A105:A112 cellatartományban találhatók. A hozzájuk tartozó 3 nemzetgazdasági szektor a B-C-D oszlopok azonos soraiból olvashatók ki. POJO-k létrehozása mindenképpen hasznos a megvalósításhoz, például new SankeyData("Közép-Dunántúl", "Szolgáltatás", 253.89). Ezekből generikus listát is célszerű építeni: List<SankeyData> sankeyDataList.

Többféleképpen is hozzájuthatunk az adatokhoz attól függően, hogy milyen előismeretekkel rendelkezünk a különböző tanfolyamainkon:

  • A Java SE szoftverfejlesztő tanfolyamon „kézzel” letölthetjük a projekt files mappájába az XLS fájlt. Ezután akár manuálisan is összeállítható a POJO lista, vagy a JExcel API-val is hatékonyan feldolgozható a XLS fájl aktuális munkalapja. Fájlkezelés előtt az összeállított HTML fájlt kiírathatjuk a konzolra, ahonnan „kézzel” vágólapozva létrehozhatjuk belőle a szükséges HTML fájlt. Fájlkezeléssel persze adott mappába, adott fájlnévvel, kivételkezeléssel a java.io vagy java.nio csomagot használva a HTML fájl generálása is automatizálható.
  • A Java EE szoftverfejlesztő tanfolyamon megvalósítható, hogy a program kivételkezeléssel hálózati kapcsolatot épít, majd letölti az XLS fájlt és ezzel a feladat visszavezethető az előző esetekre. Azt is megtehetjük, hogy az XLS fájlt nem töltjük le, hanem olvasunk belőle közvetlenül a webről. Ekkor is rendelkezésünkre áll a POJO lista. Itt már tudunk HTML fájlt is automatikusan generálni.

Tanulmányoznunk kell a Google Charts galériában a Sankey diagram dokumentációját! Meg kell ismernünk a paraméterezési lehetőségeit és JavaScript forráskódját!

Megvalósítás

A createSankeyDiagram() függvény létrehozza a HTML fájl szöveges tartalmát. Átveszi adatforrásként a sankeyDataList generikus POJO listát. A String típusú sankeyData objektum tartalmazza a Stream API-val hatékonyan összefűzött – POJO-któl elkért – toString() szövegeket. Ezek a diagramhoz szükséges adatok ( addRows …). Például: "['Közép-Dunántúl', 'Szolgáltatás', 253.89]". A  String típusú  html objektum kezdetben tartalmazza a diagramhoz nem szükséges fix részeket, a diagram alapbeállításait, valamint a diagram fejlécéhez szükséges metaadatokat ( addColumnRégió, Nemzetgazdasági szektor, Foglalkoztatottak száma (ezer fő)). A függvény végül a html objektum #SankeyData# részét cseréli a sankeyData-val és az adatfüggő résszel frissített HTML tartalommal tér vissza.

Eredmény

Az egyik eredmény a generált HTML fájl (benne a grafikonhoz tartozó JavaScript) forráskódját tartalmazza:

A másik eredmény a Sankey-diagram képernyőképe, amelyről kiválóan leolvashatók az értékek:

Sankey-diagram

A böngészőben megjelenő HTML oldalon a Sankey-diagram dinamikusan – az egérkurzor pozíciójától függően – képes az aktuális adatok megjelenítésére, mintegy lebegő jelmagyarázatként.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Programozd a jövőd! – IT a jövőd

A GINOP-3.1.1-VEKOP-15-2016-00001 „Programozd a jövőd!” projekt célja volt, hogy a nemzetgazdasági szempontból egyre jelentősebb informatikai ágazatban minél több diplomás fiatal kezdje meg pályafutását.

Kiemelt feladata volt a munkaerő-kínálat fejlesztése, a felsőoktatási informatikai kompetenciafejlesztés és a képzés támogatása, valamint, hogy a képzési rendszer a gazdasági szereplők igényeinek megfelelő piacképest tudást nyújtson.

Arra került a fókusz, hogy az egyetemi hallgatók megismerhessék az információs-kommunikációs technológiai (IKT) vállalkozások által alkalmazott technológiákat.

A Programozd a jövőd! projekt pillérei

  • I. pillér – Az informatikai oktatás megújítását támogató tudásbázis kialakítása
    Olyan kutatás, felmérés és adatgyűjtés valósult meg, amely lehetővé tette az informatikai munkaerő-piaci igények feltérképezését és a beavatkozások tervezését nemzetközi és hazai jó gyakorlatok feltárásán keresztül.
  • II. pillér – A képző intézmények és a környezetükben működő IKT vállalkozások közötti együttműködések fejlesztése
    Vállalati együttműködések valósultak meg felsőoktatási intézmények bevonásával, amelyek növelték a képzések munkaerő-piaci relevanciáját.
  • III. pillér – Az informatikai szakmák társadalmi-gazdasági elismertségének és népszerűségének növelése
    A középiskolásokat célzó motivációs akciók valósultak meg, amelyek az informatikai szakmák bemutatásán keresztül elősegítették a pályaorientációt a pályaválasztást.
  • IV. pillér – Kommunikációs tevékenységek megvalósítása
    Megvalósultak a projekt tevékenységeit támogató kommunikációs kampányok, amelyek fő célja volt a társadalmi szemléletformálás, a digitalizáció népszerűsítése.
  • V. pillér – IT pályára terelést segítő digitális élményközpontok létrehozása
    Olyan digitális élmény központok kerültek kialakításra, amelyek a diákok, családok számára az IT szakma élményszerű bemutatását szolgálta.

A projekt megvalósulása

A projekt a foglalkoztatás és a gazdaság bővítését kívánta elősegíteni a munkaerő-piaci szempontból releváns informatikai végzettséggel rendelkezők számának növelésével és szaktudásuk minőségének fejlesztésével. Közvetlen célja volt a gazdasági szereplők által meghatározott munkaerő-piaci illeszkedési problémák okait feltáró és kezelő javaslatok kidolgozása és pilot programok lebonyolítása együttműködésben a gazdasági és munkaerő-piaci szereplőkkel, a vállalkozások és a képző intézmények közötti együttműködések fejlesztése, valamint az informatikai szakmák vonzerejének, társadalmi-gazdasági elismertségének növelése.

A KIFÜ, az ITM és az IVSZ voltak a projekt megvalósítói. Célcsoportjaiba az IKT vállalkozások, a felsőoktatási és közoktatási intézmények, az oktatásban érintett szervezetek, illetve az oktatási intézmények tanulói és szüleik tartoztak. 2016 szeptemberben indult és 2023 februárban zárult le a projekt, amely során 21 egyetemmel alakult ki együttműködés, valamint számos kisebb vállalkozással és nagyobb vállalattal is.

Adódott lehetőség Microsoft, Oracle, ULX, SAP tananyagokhoz való hozzáférésre és vizsga voucherekre többféle, elismert MTA és MCP szinten, valamint releváns szakmai gyakorlat megszerzésére is. Az IKT vállalkozások, vagy IKT vállalkozásban dolgozó szakemberek jelezhették részvételi szándékukat vendégoktatásokat szervező cégek felé.

A felsőoktatási intézményeknek lehetőségük volt kiválasztani a vendégoktatás tartására jelentkező személyek/cégek közül a számukra érdekes témában előadó leendő vendégoktatókat.

Az it-tanfolyam.hu részvétele

Az it-tanfolyam.hu oktatói bekapcsolódtak a Programozd a jövőd! projektbe. Ennek keretében:

  • 2 felsőoktatási intézményben vettünk részt a projekt pilot fázisában (2016-2017),
  • 12 vendégelőadást tartottunk 5 felsőoktatási intézményben Java programozás, Ipar 4.0 digitalizáció és mesterséges intelligencia, Funkcionális programozás, Tervezési minták címmel és témakörökben (2017-2022),
  • 47 pályaorientációs előadást tartottunk 34 középiskolában az IT a jövőd! – A Tiéd a pálya! előadás sorozathoz kötődően országszerte (2018-2023),
  • tanfolyamaink hallgatói számára évente offline vagy online rendezvényt szerveztünk, amelyeken sok-sok ismeretterjesztő előadást és laborgyakorlatot tartottunk (2018-2022),
  • tanfolyamaink hallgatóival és gyermekeikkel 6 alkalommal látogattunk meg digitális élményközpontokat (2018-2020),
  • karrierváltó hallgatóink gyermekei 4 alkalommal részt vettek az élményközpontok nyári táborain, ahol mi is tartottunk előadásokat (2019, 2021-2022),
  • mindent precízen dokumentáltunk a projekt követelményeinek megfelelően, valamint
  • oktatóink 14 szakmai vizsgát szereztek (2017, 2019-2021).

Köszönöm oktató kollégáimnak a folyamatos lelkesedést, az állandó tenni akarást és a rendezvényeinken való aktív közreműködést! A koordinációban nyújtott segítséget szerteágazó szakmai kapcsolatainknak köszönhetjük és köszönjük.