Népesedési világnap

Népesedési világnap logó

Népesedési világnap logóAz ENSZ 1987-ben július 11-ét a népesedési világnappá (World Population Day) nyilvánította. Bolygónk lakossága aznap érte el az 5 milliárdot. További kerek számok voltak: 1999. október 12-én 6 milliárd, 2011. október 30-án 7 milliárd. További kerek számok várhatóak: 2023 – 8 milliárd, 2037 – 9 milliárd, 2057 – 10 milliárd. A KSH elemzése részletes elemzéseket közöl évről-évre a témában, például: 2019-ben, 2018-ban. A worldometer.info weboldalon folyamatosan frissülő kimutatások érhetők el a népességhez globálisan, valamint országonként is: például Magyarország aktuális népesedési adatai.

A népesedési világnap inspirált egy Java program megtervezésére és megírására. A swing GUI-s program megjeleníti a worldometer.info weboldalról kinyerhető adatok alapján régiónként (kontinensenként) az elérhető adatokat 1950-től 2020-ig az alábbiak szerint egy világtérképen.

Az elkészült program

Népesedési világnap Java program

Tervezés

Objektumorientált szemlélettel, MVC architekturális tervezési mintát követünk, angol nyelvű interfész, osztály, változó, objektum, metódus nevekkel. A projekt neve: WorldPopulation, a csomag neve: worldpopulation. Amit lehet, konstansként interfészbe (szeparálva) teszünk és az MVC rétegekhez kötődő osztályok implementálják. A modell minden évszámhoz tárolja a szükséges adatokat, mindezt egyetlen betöltéssel/letöltéssel éri el. A program kliensként hat régióra vonatkozó adatot gyűjt össze, alkalmazkodva a szerver adatforráshoz. A címsorban lévő összesített adat is elérhető közvetlenül a weboldalon, de a kisebb adatforgalom érdekében hasznos inkább a kliensben összesíteni. Mindössze egyetlen eseménykezelés szükséges: a csúszka beállításával megadott évszám alapján frissíteni kell a régiók címkéit és az ablak címsorát. Öröklődés hasznos a feladat megoldása során: egyrészt interfészek, másrészt osztályok között.

Interfészek

Az ősinterfész a WorldPopulationConstants, benne az évszám intervallum MIN_YEAR és MAX_YEAR határaival, valamint a megjeleníthető régiók neveivel tömbben: REGION_NAME_ARRAY. Két utódinterfész épül az ősre: ModelConstants és ViewConstants. Előbbi interfész az adatforráshoz kapcsolódik: URL_COMMON az URL eleje, URL_ARRAY az URL végei régiónként tömbben. Utóbbi interfész a megjelenítéshez kapcsolódik: WORLD_MAP_IMAGE a háttérkép annak WORLD_MAP_RECT méretével együtt, valamint a régiónkénti REGION_RECT_ARRAY téglalapok tömbje a kezdeti pozíciókkal/méretekkel, TITLE a sablon a program címsorához (frissítendő az évszámmal és az összesített népességgel). A megfelelő utódinterfészt mindig implementálja az MVC szerint hozzá illeszkedő osztály.

Osztályok

A belépési pont a WorldPopulation.java fájlban található.

Három összetartozó elemi adatot fog össze egybe a RegionData POJO, ezek name, year, population nevű rendre String, int, long típusú adatok. Például: Európa, 2020, 747643253. Tartalmaz két függvényt: getPopulation(), valamint toString(). Utóbbi HTML formátumban adja vissza a megjelenítendő adatokat.

A JLabel-ből származik az igényekhez alakított RegionLabel osztály. Ennek van előre megadott pozíciója, mérete, betűtípusa, betűmérete, sárga háttérszíne, piros kerete. Ezenkívül a téglalap átlátszó, valamint a benne megjelenő HTML tartalom vízszintesen középre igazított. Némi extra funkció, hogy egérrel megfogva – drag and drop – áthelyezhető, ami a MouseMotionListener egérmozgást figyelő interfész mouseDragged() metódusának felülírásával válik lehetővé. A mozgathatóságáért saját maga felel. Példaként közöljük az osztály teljes forráskódját:

A webről adatokat szerez és tárolja a Model osztály, a java.io és java.net csomagokra építve. Egy példa: a https://www.worldometers.info/world-population/europe-population/ oldal forrásából nyeri ki az osztály az alábbi adatokat:

Ezek parszolását követően elkészül egy optimálisnak tekinthető, generikus listákból álló regionListArray tömb adatszerkezet. A parszolás történhet egyszerű szövegkezeléssel vagy JSON feldolgozással is. Erre épülnek a konstruktorral és vezérlővel összehangoltan működő getter metódusok: getHTML(), getRegionList(), getRegionData(), getPopulation(). A JSON adatforrás feldolgozását most nem részletezzük, de hasonlóról blogoltunk már: Időjárás Budapesten.

A grafikus felhasználói felületet adja a JFrame utód View osztály. Három GUI komponensből áll: pnWorldMap – háttérkép JPanel, lbYear – kiválasztott/aktuális év JLabel, slYear – kiválasztható/görgethető aktuális év JSlider. Izgalmas megoldani egymásra/egymáson elhelyezni a komponenseket. Egy JLayeredPane komponens  DEFAULT_LAYER rétegére kerül a térképet tartalmazó háttérkép, majd a  PALETTE_LAYER rétegére kerül dinamikusan a hat  RegionLabel osztályú/típusú objektum. A csúszka komponens slYearStateChanged() eseménykezelő metódusa vezérlőként megszólítja a modell réteget és a visszakapott adatokkal frissíti a nézet réteget (a címsorban lévő összesítéssel együtt, ezres szeparátorokkal).

Ötlet továbbfejlesztésre

Hat különböző weboldal forráskódjából kell összegyűjteni a megjelenítendő adatokat. Ez 2020-ban régiónként 71 számot jelent és hat régió van. Érdemes lehet olyan adattárolást megvalósítani, amely csökkenti a szerverhez fordulások számát, illetve a letöltendő adatok mennyiségét. Hiszen a múltbeli évekhez kötődő historikus adatok nem változnak. Ha ezekre valamilyen formában a program emlékszik, akkor elegendő az utolsó tárolt évből kiindulva az aktuális évig évenként, régiónként lekérni mindössze 6, 12, 18… számot, a program utolsó futtatásának évéből kiindulva. Ez lényegesen kevesebb lenne, mint a jelenlegi 6*71 lekért szám. A koncepció kulcsszava: inkrementális adatfrissítés. Ha megvalósítjuk az ötletet, akkor figyelni kell arra, hogy az aktuális/utolsó évben az adatok akár másodpercenként is változhatnak.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik (ha a swing GUI-ra koncentrálunk és az adatok helyi fájlrendszerből elérhetők), és a Java EE szoftverfejlesztő tanfolyam tematikájához kapcsolódik (ha az adatokat közvetlenül a webről olvassuk).

KSH táblázatból dolgozunk

KSH-logo

KSH-logoA Központi Statisztikai Hivatal honlapján elérhető STADAT táblákból könnyen kinyerhetjük a nekünk szükséges adatokat. A témastruktúrába sorolt online és XLS exportként is böngészhető táblázatokban megtalálhatjuk logikusan csoportosítva összesítve az adatokat régiónként (megyénként), évenként, százalékosan. Az XLS fájlformátum Java nyelven a JExcel API-val hatékonyan feldolgozható. Lássunk erre egy példát!

Feladat

A KSH 2.1.2.35. táblázatából gyűjtsük ki a 19 magyar megyére + Budapestre vonatkozóan a gazdaságilag aktívak létszámát és az első évet alapnak tekintve adjuk meg évenként a változást százalékosan!

Tervezés

A KSH témastruktúrában a táblázat elérési útja:

  • 2. Társadalom,
  • 2.1. Munkaerőpiac,
  • 2.1.2. A munkaerőpiac alakulása Magyarországon (1998–2018) -> Területi adatok,
  • 2.1.2.35. A 15–64 éves népesség gazdasági aktivitása megyénként és régiónként (1998–2018)

Online böngészhető táblázat:
https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/mpal2_01_02_35.html.

Letölthető táblázat (XLS formátumban): https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/xls/h2_1_2_35.xls.

A táblázat A oszlopában szerepelnek a régiók, megyék, időszakok (vegyesen, szövegként) és a D oszlopában a gazdaságilag aktívak (ezer fő, valós számként). A fejlécet nem szabad feldolgozni. 1998-tól 2018-ig 546 sorból áll az adatsor. A csoportosítás 26 régiót és megyét tartalmaz, amiből a 6 régiót (például: Közép-Dunántúl) ki kell hagyni.

A megyékre vonatkozóan 440 sort kell feldolgozni. Ebből az első sor a megye (vagy Budapest) neve, a többi (2019-ben 21 db) sorban találhatók az adatok (időszak). Olyan algoritmusban érdemes gondolkodni, ami a jövőben is működik. Ha csoportváltást alkalmazunk, akkor nem számít, hogy megyénként minden évben egy sornyival több adat lesz majd. A KSH táblázatok szerkezete nagyon ritkán változik, így bátran írható rájuk testre szabott forráskód (ezeket nem kell évente frissíteni).

Az évenkénti változást százalékosan nem tartalmazza a táblázat, ezt nekünk kell kiszámítani. A valós számok formázását érdemes egységesíteni, például a gazdaságilag aktívak létszámát 3 tizedesre, a változást 2 tizedesre kerekítve.

A belső adatábrázolást érdemes átgondolni. Hasznos, ha az időszakhoz tartozó három összetartozó adatot egyetlen Data POJO-ba fogjuk össze ( String period, double active és double change). Ezeket generikus listába szervezve ( ArrayList<Data> list) könnyen hozzájuk rendelhető a megye ( String county) és ezek együtt alkotják a Region POJO-t. A Region és Data kapcsolati fokszáma: 1:N. 2019-ben N=21 .

Részlet a megoldásból

A JExcel API használatához a Java projekthez hozzá kell adni a jxl.jar fájlt. A XLS fájl olvasható közvetlenül a webről is, de egyszerűbb helyi fájlrendszerbe mentett változatból dolgozni ( ./files/h2_1_2_35.xls). A megyék nevében található ékezetes karakterek miatt ügyelni kell a megfelelő karakterkódolásra ( Cp1252). A munkafüzet azonosítását követően hivatkozni kell a feldolgozandó munkalapra ( 2.1.2.35.). Az adatfeldolgozás során kihagyott régiókat (kivételeket) érdemes listába gyűjteni ( skipRegionList). A csoportváltást a két egymásba ágyazott ciklus valósítja meg. Ügyelni kell az adatok formátumának ellenőrzésére.

Eredmények

Például Somogy megyére az alábbi adatokat kapjuk eredményként (XLS formátumban, Excel-be betöltve, tipikus háttérszín kiemeléssel: szélsőértékek a C oszlopban, negatív értékek a D oszlopban):

KSH-result

További programozható feladatok

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik (ha az XLS fájlt a helyi fájlrendszerből érjük el), és a Java EE szoftverfejlesztő tanfolyam tematikájához kapcsolódik (ha az XLS fájl tartalmát közvetlenül a webről olvassuk).

Céline Dion – Courage World Tour

Céline Dion Courage World Tour

Céline Dion Courage World TourA Céline Dion – Courage World Tour esettanulmányunkban a turné első részének koncerthelyszíneit jelenítjük meg Google Charts segítségével. Ebben a blog bejegyzésben a tervezés, megvalósítás lépéseit tekintjük át és megmutatjuk az eredményeket. A Java és JavaScript forráskódokat most nem részletezzük.

Háromféle grafikont használunk

  • idővonal (Timeline) időpontok és helyszínek Gantt diagram-szerűen,
  • térkép (Geo Chart) városok megjelölésével és időpontok jelmagyarázatban,
  • tematikus térkép az USA államaival (szintén Geo Chart), az állam területén adott koncertek száma alapján és db jelmagyarázatban.

A tervezés és megvalósítás lépései

  1. Adatokat kell szerezni egy weboldal (https://www.celinedion.com/in-concert) feldolgozásával ( saveHTML()). Ehhez a művelet a GET. Figyelni kell a megfelelő User-Agent paraméterezésére és a karakterkódolásra ( ISO-8859-1). A kapott bemeneti folyam feldolgozását pufferelt módon érdemes elvégezni. Célszerű az adatforgalom minimalizásása érdekében a weboldal tartalmát helyi fájlba menteni ( tour.html). Ügyelni kell a kötelező és az ajánlott kivételkezelésre.
  2. Értelmezni kell a tour.html fájlt. A HTML tartalom végén JSON formátumban beágyazva elérhetők a koncert turné állomásainak adatai: nekünk kell a város ( city), helyszín ( venue), dátum/idő ( startDate). Érdemes külön fájlba menteni a tour.html-ből a JSON tartalmat ( tour.json), mert abból egyszerűen betölthető ( saveJSON()).
  3. Tanulmányozni kell a Google Charts diagramok közül azt a kettőt, amiket testre kell szabni: Timeline és Geo Chart. Tudni kell: mi a diagramot tartalmazó weboldal állandónak tekinthető eleje és vége (ezeket hasznos külön interfészben konstansként tárolni: HTMLFileContent), valamint mi az adatoktól függő része (közepe). Ismerni kell a szükséges metaadatok és adatok formátumát. Érdemes átnézni a különböző testre szabási és formázási lehetőségeket a fenti diagramtípusoknál (esetleg a többi típusból is meríthetünk ötleteket).
  4. A koncert turné állomásainak összetartozó 3 adatát le kell képezni POJO-vá ( Event). Ezt érdemes privát változókkal ( city, venue, startDate) és factory metódussal megvalósítani. Célszerű, ha az adatok visszakérésére alkalmas getter metódusok is készülnek ( getTimelineChartDataTableRow(), getGeoChartDataTableRow()), amelyek kiszolgálják a megfelelő diagramtípus igényeit.
  5. A tour.json fájl feldolgozásával (parszolásával) Event típusú generikus listába vagy JSON tömbbe könnyen leképezhetők az adatok.
  6. Hasznos egy vezérlőosztály létrehozása, amely a 3 diagramtípust előállító (HTML fájlt generáló) metódust ( createTimelineChart(), createGeoChartCity(), createGeoChartCountry()) valamint a belépési pontot ( main()) tartalmazza.
  7. Generálható az idővonalat tartalmazó timelineChart.html fájl a createTimelineChart()metódussal. Ehhez 5 oszlop megadása szükséges (ebben a sorrendben): label, city, tooltip, start, end. Az első 3 adat string, az utolsó 2 adat date típusú. Egy példa Event: ['2019.09.18.', 'Québec, QC', 'Videotron Centre', new Date(2019, 09, 18, 19, 0, 0), new Date(2019, 09, 18, 21, 0, 0)].
  8. Regisztrálni kell egy Google Cloud Platform felhasználói fiókot és tanulmányozni kell a geokódolás folyamatát és lehetőségeit, hiszen a városok nevéből (formátum pl.: 'Minneapolis, MN') szükség lesz azok térképi koordinátáira. Aktiválni kell a szolgáltatás használatához szükséges mapsApiKey-t.
  9. Generálható a városokat tartalmazó geoChartCity.html fájl a createGeoChartCity() metódussal. Ehhez 3 oszlop megadása szükséges (ebben a sorrendben): city, dateCity, no . Egy példa Event: ['Minneapolis, MN', '2019.11.01. Minneapolis, MN', 1].
  10. Generálható a régiókat/államokat tartalmazó geoChartCountry.html fájl a createGeoChartCountry() metódussal. Ez egy tematikus térkép: a különböző színek jelölik az egy régió/állam városaiban tartott koncertek számát. Ehhez az adatok megfelelő rendezését követően végrehajtott csoportváltás algoritmus szükséges. 2 oszlop megadása szükséges: country, concertNo. Egy példa adatsor: ['US-TX', 3].

Az eredmények

TimelineChart grafikon:

GeoChartCity grafikon:

GeoChartCountry grafikon:

Érdemes megismerni további – térképekhez kapcsolódó – grafikontípusokat is: Geomap, Intensity Map.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A példák a Java SE szoftverfejlesztő tanfolyam 37-44. óra: Fájlkezelés és a Java EE szoftverfejlesztő tanfolyam 1-4. óra: Elosztott alkalmazások, webszolgáltatások és 13-16. óra: JSON feldolgozás alkalmaihoz kötődnek.

Sankey-diagram készítése

Sankey diagram logó

Sankey-diagram-logoA Sankey-diagram alkalmas kétféle adatsor közötti N:M fokszámú kapcsolat, összefüggés és a köztes átmenet ábrázolására. Hangsúlyozza a fő átvitelt vagy áramlatokat egy rendszeren belül. Az áramlás irányát nyíllal szemlélteti és az áramlatok szélessége arányos az áramlási mennyiségekkel.

Feladat

Jelenítsük meg HTML formátumú weboldalként a magyarországi régiókban a foglalkoztatottak számát nemzetgazdasági szektorok szerint a KSH 2018-as adatsora alapján! Automatizáljuk egy Java programmal úgy a feladatot, hogy az év paraméterként megadható legyen!

Tervezés

A KSH témastruktúrában a táblázat elérési útja:

  • 5. Területi adatok,
  • 5.1. A munkaerő-piaci tendenciák Magyarország régióiban,
  • 5.1.3. A foglalkoztatottak száma nemzetgazdasági szektorok szerint, nemenként (2008–)

Online böngészhető táblázat:
http://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/h_qlf017.html.

Letölthető táblázat (XLS formátumban): http://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/xls/h5_1_3.xls.

A táblázatban lévő adatforrás szükséges része látható az ábrán:

KSH adatforrás Sankey-diagramhoz

A táblázatban a régiók az A105:A112 cellatartományban találhatók. A hozzájuk tartozó 3 nemzetgazdasági szektor a B-C-D oszlopok azonos soraiból olvashatók ki. POJO-k létrehozása mindenképpen hasznos a megvalósításhoz, például new SankeyData("Közép-Dunántúl", "Szolgáltatás", 253.89). Ezekből generikus listát is célszerű építeni: List<SankeyData> sankeyDataList.

Többféleképpen is hozzájuthatunk az adatokhoz attól függően, hogy milyen előismeretekkel rendelkezünk a különböző tanfolyamainkon:

  • A Java SE szoftverfejlesztő tanfolyamon „kézzel” letölthetjük a projekt files mappájába az XLS fájlt. Ezután akár manuálisan is összeállítható a POJO lista, vagy a JExcel API-val is hatékonyan feldolgozható a XLS fájl aktuális munkalapja. Fájlkezelés előtt az összeállított HTML fájlt kiírathatjuk a konzolra, ahonnan „kézzel” vágólapozva létrehozhatjuk belőle a szükséges HTML fájlt. Fájlkezeléssel persze adott mappába, adott fájlnévvel, kivételkezeléssel a java.io vagy java.nio csomagot használva a HTML fájl generálása is automatizálható.
  • A Java EE szoftverfejlesztő tanfolyamon megvalósítható, hogy a program kivételkezeléssel hálózati kapcsolatot épít, majd letölti az XLS fájlt és ezzel a feladat visszavezethető az előző esetekre. Azt is megtehetjük, hogy az XLS fájlt nem töltjük le, hanem olvasunk belőle közvetlenül a webről. Ekkor is rendelkezésünkre áll a POJO lista. Itt már tudunk HTML fájlt is automatikusan generálni.

Tanulmányoznunk kell a Google Charts galériában a Sankey diagram dokumentációját! Meg kell ismernünk a paraméterezési lehetőségeit és JavaScript forráskódját!

Megvalósítás

A createSankeyDiagram() függvény létrehozza a HTML fájl szöveges tartalmát. Átveszi adatforrásként a sankeyDataList generikus POJO listát. A String típusú sankeyData objektum tartalmazza a Stream API-val hatékonyan összefűzött – POJO-któl elkért – toString() szövegeket. Ezek a diagramhoz szükséges adatok ( addRows …). Például: "['Közép-Dunántúl', 'Szolgáltatás', 253.89]". A  String típusú  html objektum kezdetben tartalmazza a diagramhoz nem szükséges fix részeket, a diagram alapbeállításait, valamint a diagram fejlécéhez szükséges metaadatokat ( addColumnRégió, Nemzetgazdasági szektor, Foglalkoztatottak száma (ezer fő)). A függvény végül a html objektum #SankeyData# részét cseréli a sankeyData-val és az adatfüggő résszel frissített HTML tartalommal tér vissza.

Eredmény

Az egyik eredmény a generált HTML fájl (benne a grafikonhoz tartozó JavaScript) forráskódját tartalmazza:

A másik eredmény a Sankey-diagram képernyőképe, amelyről kiválóan leolvashatók az értékek:

Sankey-diagram

A böngészőben megjelenő HTML oldalon a Sankey-diagram dinamikusan – az egérkurzor pozíciójától függően – képes az aktuális adatok megjelenítésére, mintegy lebegő jelmagyarázatként.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Doktoranduszok programoznak

it-tanfolyam.hu adatok elemzése

it-tanfolyam.hu adatok elemzéseSaját doktorandusz csoporttársaimmal többször beszélgettünk már arról, hogyan tudnák/tudják használni a programozás eszköztárát, módszereit, lehetőségeit saját kutatási munkájukban, beépítve a kutatási folyamat egyes lépéseibe, illetve disszertációjuk elkészítésébe.

Mivel a 10 fős csoportban mindenkinek más az alapvégzettsége, így szoftverfejlesztéshez, programozáshoz közös szókincs és terminológia haladó szinten természetesen nincs, viszont közös bennünk, hogy mindannyian alkotunk különféle modelleket és elemzünk adatokat.

Például:

  • a mérnökök, fizikusok, geográfusok, biológusok többféle kísérletet végeznek el, szimulációkat terveznek és futtatnak, mérőeszközöket és műszereket használnak,
  • az informatikusok különböző matematikai eszközöket alkalmazva objektumorientált – vagy másféle – modellezést végeznek, szoftvereket terveznek, javítanak, újraírnak.

Adatokat is elemzünk, ki-ki előképzettségének megfelelően:

  • kérdőívező szoftverekből exportálva valamit,
  • Excel munkalapokon, függvényekkel, adatbázis-kezelő funkciókkal, kimutatásokkal (Pivot táblák),
  • különböző fájlformátumokkal (CSV, XML, JSON, egyedi) dolgozunk és konvertálunk A-ból B-be,
  • távoli adatbázisokhoz, felhőbeli adattárházakhoz csatlakozunk, lekérdezünk és kapunk valamilyen – többnyire szabványos – adathalmazt,
  • matematikai, statisztikai szoftvereket használunk, például: MATLAB, Derive, Maple, SPSS.

Önszerveződően összeállítottunk egy olyan két részből álló tematikát, ami mindannyiunk számára hasznos. A 64 óra két 32 órás modulból áll: Java programozás és SPSS programrendszer.

Java programozás modul

  • 1-8. óra: Objektumorientált modellezés, MVC rétegek, algoritmus- és eseményvezérelt programozás
  • 9-16. óra: Fájlkezelés és szövegfeldolgozás (XLS, CSV, XML, JSON formátumú adatok írása, olvasása, feldolgozása)
  • 17-24. óra: Adatbázis-kezelés JDBC alapon (SQL parancsok, CRUD műveletek, hierarchikus lekérdezések)
  • 25-32. óra: Komplex adatfeldolgozási feladatok megoldása programozási tételek használatával

SPSS programrendszer modul

  • 1-8. óra: Bevezetés az SPSS-be, interakciós eszközök, adatmátrix, menük: Transform, Analyze, szkriptek futtatása
  • 9-16. óra: Alapstatisztikák kérése, kereszttáblázatok készítése, hipotéziselmélethez kötődő funkciók, normalitásvizsgálat, minták összehasonlítása t-próbával
  • 17-24. óra: Regresszió-analízis: lineáris, nemlineáris, többváltozós; Idősorok elemzése: szűrés, periodogram, trendelemzés
  • 25-32. óra: Mesterséges neuronhálózatok: matematikai modell és működése

Mivel mindenki doktorandusz a csoportban, így a különböző MSc-s alapvégzettsége ellenére mindannyiunknak vannak strukturális programozáshoz kötődő alapismeretei, valamint adatok elemzéséhez szükséges elméleti matematikai/statisztikai alapjai. Az én részem a 32 órás Java programozás modul, ami 2018.10.28-tól 2018.12.09-ig tart hétvégi napokon. Ez nagyban lefedi a Java SE szoftverfejlesztő tanfolyamunk tematikáját. A koncepciót once-in-a-lifetime jelleggel dolgoztuk ki azzal a fő szándékkal, hogy hatékonyabban működjünk együtt a jövőben.