Határozott integrál oktatóprogram

Feladatspecifikáció

A határozott integrál alsó és felső közelítő (Darboux) összeg megértését kell saját fejlesztésű Java oktatóprogrammal támogatni!

Legyen adott az x2 függvény a [0, 1] zárt intervallumon úgy, hogy az x és y tengely beosztása megegyező legyen 3 egymás mellett koordináta-rendszeren. Segítsünk belátni, hogy a görbe alatti terület nagysága egyharmad egység. A tengelyek legyenek feketék, a függvénygörbe kék, a közelítő és hiba téglalapok pirosak. Legyen adott egy csúszka komponens, amiben az intervallum felosztása (n) állítható 1-től 100-ig. Például, ha n=10, akkor az ábrákon jelenjen meg a 10 alsó összeget ábrázoló téglalap, a 10 felső összeget ábrázoló téglalap, az 10 közelítési hibát ábrázoló téglalap, valamint ezek területeinek összege.

Ahogy n növekszik, láttatni kell, hogy:

  • a téglalapok a függvénygörbéhez simulnak,
  • az alsó összeg növekszik,
  • a felső összeg csökken,
  • mindkét közelítő összeg egyharmadhoz tart,
  • a hiba 0-hoz tart.

Képernyőképek

A feladatspecifikációnak megfelelően minden megjelenik az elkészült Java program grafikus felhasználói felületén. Az alábbi képernyőkép az n=10 esetben kevésbé pontos közelítést ábrázol:

A következő ábra már pontosabb közelítést mutat az osztópontok számának 30-ra növelésével:

A programmal jól szemléltethető, hogyan konvergál az alsó közelítő összeg balról, a felső közelítő összeg pedig jobbról egyharmadhoz; illetve az is, hogy a felbontás finomságának növelésével a hiba nullához tart.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ez a feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, illetve 9-12. óra: Metódusok, rekurzió alkalmához, a 29-36. óra Grafikus felhasználói felület alkalmaihoz, valamint minden tanfolyamunk orientáló moduljának 1-4. óra: Programozási tételek alkalmához kapcsolódik.

A grafikus felületek felépítésének megismerése fontos lépcső az objektumorientált programozás elmélyítéséhez, gyakorlásához. A grafikus felületekhez egy másik lényeges szemléletváltás is kapcsolódik, hiszen a korábbi algoritmusvezérelt megközelítést felváltja az eseményvezérelt (eseménykezelés).

Egyedi grafikus komponens fejlesztése

Az objektumorientált programozás három pilléren nyugszik: egységbezárás, öröklődés, polimorfizmus. Most az öröklődésre fókuszálunk. Ezzel valósul meg az egyedi grafikus komponens fejlesztése.

Elméleti háttér

Öröklődés (inheritance, extension) során a már meglévő ősosztály tulajdonságait bővíthetjük, újabb metódusokkal egészíthetjük ki, felüldefiniálhatjuk meglévő metódusait, így létrehozva az utódosztályt. Az öröklés meglévő osztály tovább­fejlesztése. Az öröklés kapcsolat a meglévő (ősosztály) és a leszármaztatott (utódosztály) között. Egy ősből több (korlátlan mennyiségű) utód is létrehozha­tó. Az öröklés tranzitív, az osztályhierarchia mélysége tetszőleges. Az ősosztály nem tud arról, hogy van(nak)-e utódosztálya(i). Az utódosztály(ok) tudják, hogy melyik osztályból származnak. Az öröklés osztályok közötti kapcsolat, ősosztály és utódosztály van, de ősobjektum és utódobjektum nincs! Az utód valamilyen szempontból mindig más, mint az ős, eltér attól, specializált.

Öröklődés során kétféle mód közül választhatunk:

  • specializálás során egy dolog (objektum) leírásához (osztályához) új, egyedi jellemzőket adunk hozzá,
  • általánosítás során több dolog (objektum) leírásából (osztályaikból) kiemeljük a közös jellemzőket.

A jellemzők lehetnek tulajdonságok, adatok, adattagok, illetve viselkedés, metó­dusok is. Az osztály deklarációinak láthatóságaira most nem térünk ki, bővebben lásd: Programozás Java nyelven könyv – új, 2022-es kiadás.

Ha nem nevezzük meg az új osztály ősosztályát, akkor a Java nyelvben az Object osztály lesz az ős (implicit ős). A Java nyelv egyszeres öröklést támo­gat, azaz egy utódosztálynak csak egyetlen közvetlen ősosztálya lehet. A több­szörös öröklés a Java nyelvben interfészek alkalmazásával valósítható meg.

A Java nyelvben az utódosztály nevét követő extends kulcsszó utal az örök­lésre ( public class UtodOsztaly extends OsOsztaly {...}), tehát az OsOsztaly-ból származik az UtodOsztaly, másképpen az OsOsztaly-nak kiterjesztése az UtodOsztaly.

Az osztályok közötti öröklési kapcsolatot UML-ben folytonos vonalból álló nyíl­lal jelöljük. A nyíl vége üres háromszög. A nyíl mindig az utódosztálytól mutat az ősosztály felé. Az osztályok közötti öröklési kapcsolatot (és csak azt) bemu­tató UML ábrát osztályhierarchia diagramnak nevezzük.

Feladat

Egyszerű módszer van arra, hogy az 2, 3, …, N természetes számok közül „kiszitáljuk” a nem prímeket. Írjuk fel sorban e számokat, és húzzuk át először a párosakat, vagyis 2 összes többszöröseit, majd a legkisebb megmaradt szám összes többszöröseit, és így tovább. Ha ezt addig folytatjuk, míg a legkisebb megmaradt szám nem éri el y/N-t, csak a [y/N, N] intervallumban lévő prímszámok maradnak áthúzatlanul. Ez az eljárás/módszer az Eratoszthenész szitája.

Öröklődés segítségével fejlesszünk olyan Java programot, amely grafikus felhasználói felülettel rendelkezik és bemutatja az Eratoszthenész szitája algoritmus működését. Ez matematikai oktatóprogram elkészítését jelenti. Az N legyen kiválasztható egy listából. A megoldás mutassa be prímszita működését az N=64 esetre.

Megoldás

 

Az öröklődés saját Panel osztály segítségével valósul meg. A Panel osztály őse a javax.swing keretrendszerben/csomagban beépített JPanel osztály. Az ősosztály testre szabása a feladat igényeihez kapcsolódóan történik. Ezek az igények kétféle csoportba sorolhatók: egyrészt a működéshez kötődő igények (eseménykezelés, vezérlés), másrészt a megjelenítéshez kötődő igények (rajzolás, színezés). A két igénycsoport közös eleme az állapotkövetés.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ez a feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, illetve 9-12. óra: Metódusok, rekurzió alkalmához, a 29-36. óra Grafikus felhasználói felület alkalmaihoz, valamint minden tanfolyamunk orientáló moduljának 1-4. óra: Programozási tételek alkalmához kapcsolódik.

Kutatók éjszakája 2024

Kutatók éjszakája logó

Kutatók éjszakája logó

A Kutatók éjszakája nemzetközi rendezvénysorozat 2005-ben indult. Magyarország 2006-ban csatlakozott. Azóta évről-évre egyre több intézmény nyitja meg hazánkban kapuit, szervez érdekes programokat, sok-sok településen, több száz helyszínen, több ezer eseményt meghirdetve sok tízezer érdeklődő/résztvevő látogatónak biztosít tartalmas estét.

Bár a kezdeményezés elsősorban a kutatói pálya népszerűsítését szolgálja, ezért leginkább a tizen- és huszonévesekre számít, az események vonzók és elég érdekesek ahhoz, hogy a kisgyerekektől a legidősebbekig mindenki megtalálja a számára izgalmas programokat. Korábban nagyobb felsőoktatási intézmények és kutatóintézetek szerepeltek döntően, de az utóbbi néhány évben egyre több kisebb intézmény, tehetséggondozással foglalkozó középiskola, cég, egyesület is csatlakozott a rendezvényhez. A Kutatók éjszakája rendezvény minden meghirdetett programja ingyenes.

Rendezvényünk plakátja

Az it-tanfolyam.hu 2024-ben is hirdetett programokat az eseményhez kötődően. Programjainkat elsődlegesen követőinknek, aktív hallgatóinknak és az alumni csoportunkban hirdettük meg, de persze nyílt rendezvényként valósult meg. Az eseményekre regisztrálni kellett a weblapon. A regisztrációs időszak két hétig tartott, szeptember 13-26-ig. Programjainkra szeptember 27-én 21:00-23:55-ig került sor.

21:00-21:25 – Kiss Balázs: OpenAI GPT nyelvi modell – tippek a hatékony használatához
Az előadó az egyike volt a Doktoranduszok programoznak – újratöltve 24 órás Mesterséges intelligencia modul oktatóinak. Saját tapasztalatait összegzi az alábbi hívószavak alapján. Alap AI funkcionalitás, megerősítéses és gépi tanulás lehetőségei és korlátai, nyelvi modellek képességei. Említ néhány generatív AI funkciót a kép, ábra, grafikon, térkép, hang, animáció, videó generálása és ezek tömeges feldolgozása kapcsán. Előkerülnek a programozási tételek, valamint alkalmazásuk multimédia analitikával együtt. Ha lesznek haladók a látogatók között, akkor az előadó bemutat néhány objektum- és aspektusorientált tervezés során használható AI eszközt, illetve igény esetén néhány kutatómunkát támogató AI eszközt is.

21:35-21:55 – Kaczur Sándor: Algoritmusok vesebeteg-donorok párosítására
Hogyan működik 2007 óta Nagy-Britanniában a vesebeteg-donorok párosítása? Sima csere 2 pár esetén adódik. 3 pár esetén körbeadják a vesét egymásnak – ez már jóval összetettebb. A felépített óriási adatbázisban akár több száz lehetőség is adódhat. A probléma megfelelő párosítási algoritmus és számítógép nélkül, pusztán emberi erővel megoldhatatlan lenne. Az implementált algoritmus futási ideje mindössze 30 perc. A párosítást követően a következő lépés a műtétek egyidejűsége, és a donor szervek „utaztatása” minden lehetséges földi, vízi, légi úton és lehetséges közlekedési eszközzel. Hogyan működik mindez a gyakorlatban? Milyen korlátok, problémák vannak? Milyen adatok alapján dönthető el a betegek „kompatibilitása”? Ezek közül mi kapcsolódik az egészségügyhöz és a szállításhoz? Az előadó próbál válaszokat adni, de lehet, hogy a végén több lesz a kérdés, mint a válasz. Vajon egyáltalán felmerül a párosítási algoritmus hatékonysága ekkora társadalmi hasznosság mellett? A program a Java tanfolyamaink orientáló moduljához kötődik. A tavalyi előadás anyaga kiegészült néhány igazán látványos animációval, szimulációval.

22:00-22:25 – Szegedi Kristóf: Játékprogramok nyerő stratégiáinak elemzése
A tudásalapú rendszerek elméleti alapjaihoz tartoznak a mesterséges intelligencia különböző megoldáskereső módszerei, az állapottér-reprezentáció és a klasszikus keresési stratégiák, heurisztikák. Egy játék állapotait nyilvántartjuk egy adatszerkezetben. Lehet, hogy néhány lépést előre kalkulálunk (kiterjesztünk) és ezek elágazásaiból fát (fa adatszerkezet) tudunk építeni. Ezeket hatékonyan karban kell tartani konstrukciós és szelekciós műveletekkel. Heurisztika alapján döntéseket kell hozni. Vajon melyik állapot a jobb, vagy kevésbé rossz, legalább olyan jó mint ahol járunk? Ki kell értékelni és abba az irányba érdemes haladni, amelyben végül a döntések sokasága igazolja és egyben adja a nyerő stratégiát. Ha ez nem megy, akkor még mindig játszhatunk nem vesztő stratégiával, azaz lehet cél a hosszabb játékmenet, vagy akár a döntetlen állapot is. Az előadás ismertet néhány tipikus problémaszituációt, játékteret leképező reprezentációs gráfbeli navigációt és összehasonlít néhány fabejáró/gráfbejáró stratégiát. A program mindhárom Java tanfolyamunk orientáló moduljához kötődik. Előismeretként feltételezünk némi jártasságot a programozási alapismeretek, programozási tételek, ciklusok, metódusok, tömbök témakörökből.

22:30-22:55 – Hollós Gábor: Algoritmikus gondolkodás fejlesztése: mintaprogramok, esettanulmányok
Az előadó bemutat néhány olyan mintaprogramot/esettanulmányt – természetesen a fokozatosság elve alapján -, amelyek kiválóan alkalmasak a közös eszmecserére. Az algoritmusok átgondolása segíti a szabályalapú megközelítést. Sémák, programozási tételek is előkerülnek – sőt ezek egymásba ágyazása is előkerül. Iteráció vs. rekurzió. Különböző adatszerkezetek képességei, funkciói, konstrukciós és szelekciós műveletei. Az algoritmikus megközelítés szemléletmód állandóságot, stabilitást jelent gondolkodásunkban, tágítja szellemi tevékenységünk körét, célt és formát ad egy probléma megoldásának. Az előadó abban bízik, hogy a fentiek érzékeltetésére alkalmas problémákat, programokat gyűjtögetett össze.

23:00-23:25 – Falus Anita, Ménesi Viktor: Karrierváltás után – az álláskeresés és néhány hónap KKV-s tapasztalatai szoftverfejlesztőként
Mennyire könnyű ma szoftverfejlesztőként elhelyezkedni szakirányú felsőfokú végzettség nélkül? Milyen kihívásokkal találkozhatunk a felvételi folyamat során? Milyen elvárásokat támasztanak a munkaadók egy junior szakemberrel szemben? Hogyan telnek a beilleszkedés után a hétköznapok junior fejlesztőként kis létszámmal működő informatikai profilú kisvállalkozásnál? A tanfolyamainkon 2021-től 2023-ig végzett előadók karrierváltó junior szakemberként személyes tapasztalataikról számolnak be és válaszolnak a kérdésekre. A program a Java tanfolyamaink orientáló moduljához kötődik.

23:30-23:55 – Kaczur Sándor: Gondolkodjunk logikusan!
Az előadás során áttekintjük az intelligencia, a kreatív problémamegoldó és logikus gondolkodás összefüggéseit és izgalmas feladatokból válogatva közösen megoldunk néhány fejtörő feladatot. Néhány példa: Hány éves a kapitány?CHOO + CHOO = TRAIN, Logikus gondolkodás teszt. Minden feladathoz adunk rávezető példákat – ha esetleg egyik-másik nem menne, akkor ebből ki fog derülni, hogy miket érdemes gyakorolni ahhoz, hogy sikerüljön. A korábbi évek anyagát az előadó kiegészítette néhány Java algebrai csomag funkcionalitásának bemutatásával és látványos, szinte önmagyarázó grafikus ábrákkal.

 

A programjaink népszerűek voltak. 52 érdeklődő látogatót fogadtunk. Többségük végig velünk tartott. Elgondolkodtató párbeszéd alakult ki a mesterséges intelligencia témakörében, illetve sok-sok kreatív megoldás került elő a logikus gondolkodás program fejtörőivel kapcsolatosan. Néhányan megragadták a lehetőséget, hogy több budapesti helyszínt is meglátogassanak – ahogyan ez megszokott a Kutatók éjszakája rendezvényeken hosszú évek óta. Kellemes hangulatban, tartalmasan töltöttük együtt ezt a három órát, aminek igazán örülök.

Szeretném megköszönni az előadó oktató kollégák és alumni hallgatóink színvonalas munkáját, igényes felkészülését. Köszönjük mindenkinek, aki részt vett a Kutatók éjszakája 2024 rendezvényünkön. Az előadások prezentációit tanfolyamaink hallgatói számára – a témához kapcsolódó témakörökhöz, ILIAS-ra feltöltve – tesszük elérhetővé.

Euler állatos feladata – geometriai megközelítés

EulerAllat

EulerAllatValaki sertést, kecskét és juhot vásá­rolt, összesen 100 állatot, pontosan 100 aranyért. A sertés darabja 3 és fél arany, a kecskéé 1 és egyharmad, a juhoké fél arany. Hány darabot vehetett az egyes állatokból?

Tudjuk, hogy a feladatnak három megoldása van:

  • 5 db sertés és 42 db kecske és 53 db juh
  • 10 db sertés és 24 db kecske és 66 db juh
  • 15 db sertés és 6 db kecske és 79 db juh

Klasszikus informatikai megközelítést – egymásba ágyazott ciklusokat – bemutattam már: Euler állatos feladata. A brute force alapgondolat fokozatos finomítását követően néhány ötleteket is adtam a továbbfejlesztéshez. Ez igazi örökzöld feladat. Látogatottsága alapján rendületlenül népszerű ez a blog bejegyzés az it-tanfolyam.hu szakmai blogban. Többek között ez inspirált a feladattal való további foglalkozásra.

Mit jelent a geometriai megközelítés?

Egy térbeli pont három koordinátával leírható. Az (s, k, j) ponthármas jelenti a sertések, kecskék és juhok számát. Az RGB színkockához hasonlóan (amibe belefér az összes ábrázolható színhez tartozó koordinátapont), most is elférünk egy kockában. Legyen a kocka egyik csúcsa az origó és az élei legyenek 100 egység hosszúak. A feladat megfogalmazása alapján két egyenlet (e1 és e2) írható fel 3-3 együtthatóval. Mindkét egyenlet meghatároz egy síkot (s1 és s2) a térben, amelynek ábrázoljuk a kockába eső síkmetszeteit. A két sík metszésvonala egyenes (e3), amire esnek a megoldások pontjai (m1, m2, m3). Lépésenként haladunk a geometriai ábrázolás során.

A grafikus felületen történő ábrázoláshoz, rajzoláshoz két korábbi projektünkből indulunk ki. A Kígyókocka grafikus felületen feladat ismertet egy grafikus keretrendszert JavaFX-ben megvalósítva. A három részből álló Naprendszer szimuláció esettanulmányunk pedig ismerteti az ábrázoláshoz szükséges elméleti hátteret, homogén transzformációkat, vetületi leképezést, Java forráskódot is bemutat a transzformációs mátrix alkalmazására.  Az eddig említett három blog bejegyzést mind összeépítve készültek a továbbiak.

A geometriai megoldást lépésenként, saját fejlesztésű, grafikus felhasználói felülettel rendelkező, JavaFX alapú programról készült képernyőképek mutatják be – markáns Java forráskód-részletekkel.

Hogy jelenik meg a megoldásokat tartalmazó kocka?

Elegendő ábrázolni a kockának azt a három élét, amik egybeesnek a koordinátatengelyekkel. Az RGB színkockához hasonlóan piros, zöld, kék színekkel jelennek meg a három tengelyen lévő néhány pont. Az ábrázoláshoz érdemes kísérletezni egy kicsit: mekkora méretben (skála), honnan (nézőpont), milyen messziről (vetület, ideális pont, perspektíva, távolság) látszik a modelltérbeli objektum (igen, ez a kocka).

Az alábbi Java forráskód-részlet helyezi el a fenti pontokat. Mindhárom tengelyen 5-től 95-ig, 10-esével haladunk. Így elkerülhető, hogy az origóba kerüljön pont, hiszen az nem tudna egyszerre három színnel megjelenni. Mivel az állatok száma pozitív, így a koordinátapontok is nemnegatívak.

Hol vannak az első egyenlet síkjának pontjai?

A korábbi megoldásnál feltételként megfogalmazott első 3.5*s+4.0/3*k+0.5*j==100 egyenlet egyszerű átalakításokkal megadja a piros és zöld síkbeli ponthoz tartozó kék térbeli pontot: j=(600-21*s-8*k)/3. Ezek az s1 síkra esnek. A citromsárga pontokat páros koordinátapárokra vizsgált feltétel jelöli ki. A narancssárga vonal behatárolja ezt a síkmetszetet. Ez a négyszög (trapéz) esik bele a kockába.

A citromsárga pontokat az első egymásba ágyazott ciklusok adják hozzá az ábrázolt modelltérhez: érzékeltetve a síkbeli pontokat. A narancssárga pontokkal a második egymásba ágyazott ciklusok bővítik a modellteret: behatárolva a kockabeli négyszög síkrészletet. (A trapéz oldalait szakaszként is lehetne ábrázolni, de ez a kellően sűrű ponthalmaz is elegendő).

Hol vannak a második egyenlet síkjának pontjai?

Hasonlóan az eddigiekhez. A korábbi  s+k+j==100 feltételből adódik a szintén feltételként megfogalmazott  j==100-s-k egyenlet. Ezek az s2 síkra esnek. Világosszürke pontok érzékeltetik a síkot és sötétszürke pontok adják a síkrészlet határait. A síkból ez a háromszög esik bele a kockába.

A Java forráskód nagyon hasonló az előzőhöz.

Hogyan helyezkedik el a két sík a kockában?

Egyben kirajzoltatva a fentieket, könnyen adódik ez az ábra:

Hol van a két sík metszésvonala?

Mivel a két sík nem esik egybe, így van metszésvonaluk. Ez egy egyenes, amiből csak az az e3 szakasz rész szükséges, ami a kockába esik. Bíbor (magenta) szín jelöli az alábbi ábrán:

Ahol a két egyenlethez tartozó konkrét pontok egybeesnek, ott van a metszésvonal. A behelyettesítést behatároló ciklusok szervezéséből (a ciklusváltozók alsó és felső és határaiból) adódik, hogy csak a kockabeli szakaszt rajzolja ki az alábbi Java forráskód-részlet:

Hol jelenik meg a feladat három megoldása?

A két egyenlethez tartozó síkok kockába eső metszésvonalán helyezkednek el az egész koordinátákkal ábrázolható, koordináta-hármasként megjelenő pontok. Nagyobb fehér pontok jelölik ezeket az alábbi ábrán:

Az eddigiek alapján könnyen adódik a három pont/megoldást ábrázoló Java forráskód-részlet:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ez a feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, illetve 9-12. óra: Metódusok, rekurzió alkalmához, a 29-36. óra Grafikus felhasználói felület alkalmaihoz, valamint minden tanfolyamunk orientáló moduljának 1-4. óra: Programozási tételek alkalmához kapcsolódik.

Tanfolyamainkon JavaFX grafikus felülettel hangsúlyosan nem foglalkozunk, de egy-egy kész forráskódot közösen megbeszélünk, és össze is hasonlítjuk a swing-es változattal. Fejlesztünk játékprogramot, de inkább konzolosan, vagy swing-es ablakban, vagy webes alkalmazásként.

A grafikus felületek felépítésének megismerése fontos lépcső az objektumorientált programozás elmélyítéséhez, gyakorlásához. A grafikus felületekhez egy másik lényeges szemléletváltás is kapcsolódik, hiszen a korábbi algoritmusvezérelt megközelítést felváltja az eseményvezérelt (eseménykezelés). A GUI-s feladatainkat tudatosan hangsúlyozott MVC-s projektekben készítjük el.

Kockadobás kliens-szerver alkalmazás

Fejlesszünk elosztott, hálózatos, datagram alapú üzenetküldéssel megvalósított Java alkalmazást!

A kockadobás kliens egyszerre két szabályos dobókockával dob, amit ezerszer megismétel és a dobott számok összegét datagram típusú üzenetküldéssel folyamatosan elküldi a szervernek. A szerver localhost-on fut és egy megadott porton keresztül várja a klienstől. A szerver és a kliens egyaránt szálkezelést alkalmazó konzolos alkalmazás.

A projektben van egy swing GUI-s alkalmazás, amely JFreeChart oszlopdiagramon – folyamatosan frissítve – megjeleníti az összesített adatokat, mindez a szerver üzenetküldésével irányítva (amint beérkezik egy dobott (2-12-ig) összeg).

A kommunikációnak – a lehetőségekhez képes – biztonságosnak és – a hálózati adatforgalmat tekintve – takarékosnak kell lennie! Ennek részeként szükséges egy azonosító és egy egyszerű szabály (protokoll).

Tekintsük át mondatszerűen a szálkezelést használó kliens és szerver kommunikációhoz kötődő feladatait:

Ezek működését összefogja egy központi vezérlőosztály és ez a fejlesztőeszköz projektablakában így jelenik meg (egyetlen MVC Java projektként):

A program két felületen kommunikál. A háttérben konzolosan logol a kliens, és a háttérben futó szerver időnként frissítteti a grafikus felhasználói felületen (GUI, ablak) megjelenő grafikont:

Kockadobás - Java kliens-szerver alkalmazás működésa

Aki kedvet kapott: bátran készítse el a fenti terv/koncepció/specifikáció alapján az MVC Java projektet. Érdemes alaposan tesztelni: külön a szervert, külön a klienst, először indítva az egyiket, majd a másikat, leállítani az egyiket majd fordítva. Átgondoltan indokolni is hasznos, vajon mi, hogyan és miért történik.

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java EE szoftverfejlesztő tanfolyam 1-8. óra: Elosztott alkalmazások, webszolgáltatások, szálkezelés, párhuzamosság alkalmához kapcsolódik. Amikor itt járunk a tananyagban, akkor a GUI felület és a grafikon tervezése, megvalósítása már magabiztosan megy, így elegendő a hálózati kommunikációra helyezni a fókuszt.