Kockadobás kliens-szerver alkalmazás

Fejlesszünk elosztott, hálózatos, datagram alapú üzenetküldéssel megvalósított Java alkalmazást!

A kockadobás kliens egyszerre két szabályos dobókockával dob, amit ezerszer megismétel és a dobott számok összegét datagram típusú üzenetküldéssel folyamatosan elküldi a szervernek. A szerver localhost-on fut és egy megadott porton keresztül várja a klienstől. A szerver és a kliens egyaránt szálkezelést alkalmazó konzolos alkalmazás.

A projektben van egy swing GUI-s alkalmazás, amely JFreeChart oszlopdiagramon – folyamatosan frissítve – megjeleníti az összesített adatokat, mindez a szerver üzenetküldésével irányítva (amint beérkezik egy dobott (2-12-ig) összeg).

A kommunikációnak – a lehetőségekhez képes – biztonságosnak és – a hálózati adatforgalmat tekintve – takarékosnak kell lennie! Ennek részeként szükséges egy azonosító és egy egyszerű szabály (protokoll).

Tekintsük át mondatszerűen a szálkezelést használó kliens és szerver kommunikációhoz kötődő feladatait:

Ezek működését összefogja egy központi vezérlőosztály és ez a fejlesztőeszköz projektablakában így jelenik meg (egyetlen MVC Java projektként):

A program két felületen kommunikál. A háttérben konzolosan logol a kliens, és a háttérben futó szerver időnként frissítteti a grafikus felhasználói felületen (GUI, ablak) megjelenő grafikont:

Kockadobás - Java kliens-szerver alkalmazás működésa

Aki kedvet kapott: bátran készítse el a fenti terv/koncepció/specifikáció alapján az MVC Java projektet. Érdemes alaposan tesztelni: külön a szervert, külön a klienst, először indítva az egyiket, majd a másikat, leállítani az egyiket majd fordítva. Átgondoltan indokolni is hasznos, vajon mi, hogyan és miért történik.

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java EE szoftverfejlesztő tanfolyam 1-8. óra: Elosztott alkalmazások, webszolgáltatások, szálkezelés, párhuzamosság alkalmához kapcsolódik. Amikor itt járunk a tananyagban, akkor a GUI felület és a grafikon tervezése, megvalósítása már magabiztosan megy, így elegendő a hálózati kommunikációra helyezni a fókuszt.

Naprendszer szimuláció – elméleti háttér

Naprendszer szimulációt terveztünk és valósítottunk meg Java nyelven, amit három részből álló blog bejegyzés sorozatban mutatunk be (ez az 1. rész):

  • Naprendszer szimuláció 1. rész – elméleti háttér
  • Naprendszer szimuláció 2. rész – objektumorientált tervezés (hamarosan, februárban)
  • Naprendszer szimuláció 3. rész – megvalósítás Java nyelven (hamarosan, márciusban)

A Naprendszer szimuláció elméleti háttere

A Naprendszer szimulációhoz elengedhetetlen, hogy ismerjük a homogén koordinátákat, az elemi műveletek egységes megvalósításához szükséges transzformációs mátrixokat, a tömegvonzás elvét és az implementációhoz szükséges MVC modellt.

Homogén koordináták

Számítógépes algoritmusokkal egyszerű a térbeli transzformáció megvalósítása, ha homogén koordinátákat használunk. Segítségükkel az affin transzformációk egységesen kezelhetők. A cél egy egységes matematikai formalizmus alkalmazása. A pontok az égitestek középpontjait fogják jelölni. Legyen a P pont 3D-beli koordinátái: P=(x, y, z). Szükséges egy konstans érték. Ha w≠0, akkor a P pont koordinátái: P=(w·x, w·y, w·z, w). Ha w=1, akkor a P pont normalizált homogén koordinátái: P=(x, y, z, 1). A pontnégyes kijelölése kölcsönösen egyértelmű.

Transzformációk

Koordináta transzformáció során az ábrázolandó grafikus objektum pontjaihoz (tárgypontokhoz) új koordináta-rendszert rendelünk hozzá. Az objektum nem változik (nem torzul, nem változtatja meg az alakját), csupán a nézőpont változik meg. Például: a koordináta-rendszer eltolása, elforgatása, a koordinátatengelyek felcserélése, tükrözése, és a léptékváltás (nagyítás, kicsinyítés, összenyomás, széthúzás), elforgatjuk az ekliptika síkját a szimulált Naprendszerben.

Pont transzformáció esetén a tárgypontokhoz hozzárendeljük azok egy adott szempont szerinti hasonmását. Például: 3D-s tárgyak leképezése 2D-s képre, objektumok eltolása, forgatása, mozgatása, égitestek mozgatása tömegvonzás alapján. Affin transzformációk (egybevágósági és hasonlósági transzformációk) alkalmazása esetén pont képe pont, szakasz képe szakasz, felület képe felület, valamint metsző térelemek eredeti metszésvonala megegyezik azok leképezett metszésvonalával.

A számítógépes grafika területén az affin transzformációk általános alakja (mátrixosan):

A pont a B=(bx, by, bz) vektorral eltolható. A pont – a T=(t11, t12, …, t33) mátrixot használva – adott szöggel elforgatható, skálázható, tükrözhető. A számítógépes grafikában ezt a transzformációs mátrixot a homogén koordinátákkal alkalmazva, az összes geometriai transzformáció hatékonyan megvalósítható, visszavezethető mátrixok szorzására. Mindezt saját magunk is implementálhatjuk, de része a DirectX és OpenGL rendering pipeline-jának is.

Más módon is lehetne: egyenes és ehhez tartozó szög párossal is dolgozhatnánk.

A tömegvonzás elve

A tömegvonzás bármely két égitest között meghatározott, függ a gravitációs állandótól és az égitestek tömegétől egyenes arányban, az égitestek (tömeg)középpontjainak távolságától fordított arányban. Ez a Newton szerinti értelmezés, amelynek képlete:

A hatás-ellenhatás törvénye miatt a vonzás – egymás felé való gyorsulás – kölcsönös, a gyorsulás az égitestek tömegével fordítottan arányos, sosem nulla. A Naprendszerben a bolygók a Nap körül keringenek, és a bolygóknak lehetnek holdjaik. Egységesen kezelve: égitestek.

A tömegvonzásnak más elméleti megközelítései is vannak: Einstein gödör-modellje, Kepler törvényei, illetve differenciál-egyenletrendszer, integrálszámítás is használható a közelítő képlet helyett (csak ideális modell esetén pontszerű az égitest és gömbszimmetrikus azok tömegeloszlása), illetve ismeretes többféle értelmezés a rendszer/modell stabilitására: Lagrange pontok, Lyapunov stabilitás.

Az MVC modell

A klasszikus megközelítés szerint a szoftveres alkalmazások három, egymástól jól elkülöníthető szereppel rendelkező egységből állnak: modell (model), nézet (view), vezérlő (controller). A Java nyelv Swing komponensei az MVC architektúra szerint működnek.

A vezérlő reagál az érkező eseményre, hozzáfér a modell adatszerkezeteihez, azaz igénybe veszi a modell szolgáltatásait, valamint frissítheti a nézetet. A nézet a vezérlő frissítési kérésére a közvetlenül megkapott adatok alapján, vagy a modelltől elkért adatok alapján frissíti saját magát. A vezérlő határozza meg az alkalmazás, komponens, program működését. Egy modellt több nézet is használhat. A modell közvetlenül is üzenheti a nézetnek, hogy megváltozott. A nézet adja a látványt, amelyet angolul skin vagy „look and feel”-nek neveznek.

Egy matematika érettségi feladat megoldása programozással 2022

érettségi logó

érettségi logóA 2022-es középszintű matematika érettségi feladatsor eléggé egyszerű volt, de azért a 6. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá a megszámolás programozási tétel. Többféle megoldás/megközelítés (iteratív és rekurzív) is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

6. feladat

Egy feleletválasztós teszt 5 kérdésből áll, minden kérdésnél négy válaszlehetőség van. Hányféleképpen lehet az 5 kérdésből álló tesztet kitölteni, ha minden kérdésnél egy választ kell megjelölni?

1. megoldás

Rögtön tudjuk, hogy ez kombinatorika, n elem k-ad osztályú ismétléses variációja, amelynek paraméterei: n=4, k=5. A hatványozás azonosságainak ismeretében fejből is tudjuk a megoldást: 45=210=1024. A Java forráskód elvégzi a hatványozást. A Math.pow() függvény általánosabb, mint amire most szükségünk van. Fogad double valós paramétereket és double típusú értékkel tér vissza. Ezért hasznos az (int) explicit típuskényszerítés.

Másképpen: négy elemű halmazból öt elemet kiválasztunk és ezeket sorba rendezzük (permutáljuk) és egy elemet egy csoportban akár ötször is felhasználhatunk. Számít a sorrend. A lehetséges variációk száma: 1024.

2. megoldás

Ha hasznos lenne egy általános metódus az ismétléses variáció kiszámítására, akkor ez egy tipikus megoldás lehet erre. Kiegészítendő még a két paraméter előjelének ellenőrzésével.

3. megoldás

Ha a megértést segíti, akkor a teljes leszámolás (brute force) módszerével, egymásba ágyazott ciklusokkal könnyen kiírathatjuk a konzolra az 1024 db különböző válaszlehetőséget. A k-val kezdődő sorszámozott ciklusváltozók jelölik az öt kérdést, azon belül az 'a'-tól 'd'-ig karakterek adják a válaszlehetőségeket. Eredményül ezt kapjuk (görgethető):

4. megoldás

Ha csak a végeredmény szükséges, akkor ez az iteratív megoldás a megszámolás programozási tétellel előállítja azt.

5. megoldás

Ez egy rekurzív megoldás. Ciklus helyett a metódus önmagát hívja meg, így valósul meg az ismételt utasításvégrehajtás. A válaszlehetőségek összefűzésével (konkatenáció) előállított válasz akkor megfelelő, ha annak hossza öt. Ez esetben kiíródik a válaszlehetőség a konzolra (mintegy mellékhatásként). Ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

6. megoldás

Szintén, ha csak a végeredmény szükséges, akkor ez a mellékhatással rendelkező rekurzív metódus előállítja azt. A mellékhatás most az, hogy a metódus eljárás és nem függvény és szükséges hozzá a db osztályváltozó (ami a metódushoz képest globálisnak is tekinthető).

7. megoldás

Ez a megoldás a válaszlehetőségeket megfelelteti n alapú számrendszerben k számjegyből álló számoknak. A kétdimenziós tömbben számokat tárol, így:

  • 1,…,1,1 → 0…0000
  • 1,…,1,2 → 0…0001
  • 1,…,1,n → 0…001(n1)
  • 1,…,2,n → 0…001(n1)
  • n,…,n,n → (n1)...(n1)

Végül a kiíró ciklus ezeket a számokat karakterekké alakítja ( 'a' ASCII kódja 97) és fordított sorrendben írja ki, hogy ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

Továbbfejlesztési lehetőségek

  • A 2. megoldáshoz: teszteljük le a lehetséges túlcsordulást és az int típus helyett szükség esetén használjunk long típust!
  • A 3. megoldáshoz: építsünk kétdimenziós tömb adatszerkezetet, amiből később az i-edik válaszlehetőség megadható!
  • Előzőhöz: állítsuk elő lexikografikus sorrendben az i-edik válaszlehetőséget adatszerkezet felépítése nélkül!
  • A 6. megoldáshoz: valósítsuk meg a rekurzív gondolatmenetet mellékhatás nélkül!
  • Teszteljünk: mennyi idő alatt hajtódik végre a 4. és a 6. megoldás? Mekkora paraméterekkel érzékelhető, hogy a rekurzió jóval lassabban fut?
  • A 7. megoldáshoz: cseréljük le az egésztömb adatszerkezetet karaktertömbre!

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, valamint 21-24. óra: Objektumorientált programozás 1. rész alkalmaihoz kötődik.

Ratkó István emlékest 2022

A Gábor Dénes Főiskolán működő Ratkó István matematika interdiszciplináris alkalmazásai Műhely 2022. március 25-én 10. alkalommal rendezte meg a Ratkó István emlékestet. Ezen már többször is részt vettem előadóként és a hallgatóság tagjaként is. 2014-ben Prímszámkereső algoritmusok hatékonysága címmel, 2015-ben A bűvös négyzet története és előállítása (oktatóprogram) címmel tartottam előadást. A jubileumi emlékesten pedig „Töltsünk ki az ötöslottón 100 szelvényt úgy, hogy valamelyik szelvénnyel biztosan legyen két találatunk!” – a feladat megoldásához vezető út címmel tartottam előadást.

A blog bejegyzésben röviden összefoglalom az előadást:

  • Személyes élmények Ratkó tanár úrhoz kötődően
  • Ötöslottó: diszkrét matematika, elemi kombinatorikai feladat, lehetséges különböző szelvények száma, öttalálatos valószínűsége, szemléltetés
  • Véletlenszámok előállítása: valódi és ál (pszeudo) véletlenszámok, hardveres és szoftveres megoldások áttekintése, LCG
  • Egyetlen véletlenszám előállítása Java nyelven: procedurális, OO, szálbiztos megoldások
  • Egyetlen lottószelvény előállítása Java nyelven: adatszerkezet nélkül, logikai tömb (demóprogram), számtömb, szöveg (McMillan egyenlőtlenség, optimális kód, Huffman kód, prefixmentes kódolás, Shannon-Fano kód, hibajelző és hibajavító kód, Hamming távolság, Reed-Solomon kód, algebra: véges testek megkonstruálása), generikus lista (érték), generikus lista (keverés), generikus lista (elfogyasztás), generikus halmaz, funkcionális programozás / algoritmusok és adatszerkezetek rövid elemzése, összehasonlítása, kompromisszumok
  • Találatok száma: matematika vs. programozási tételek, metszet tömbbel és generikus listával, Stream API-val, lambda kifejezéssel
  • Különböző lottószelvények előállítása: összes eset, brute force, mesterséges intelligencia, problématér|állapottér, kombinatorikai robbanás kontrollálása
    (szemléletváltás: az eddigi 1-90 intervallumból kiválasztott 5 különböző szám egy lottószelvényt jelentett, mostantól az 1-43949268 intervallumból kiválasztott különböző számok különböző lottószelvényeket jelentenek)

Eddig minden feldolgozható a középiskolás matematikai eszköztárral és kezdő Java objektumorientált programozás által biztosított mozgástérben. A továbbiakhoz szintet kell lépni.

A konkrét feladatspecifikáció:

„Töltsünk ki az ötöslottón 100 szelvényt úgy, hogy valamelyik szelvénnyel biztosan legyen két találatunk!” (Segítség: töltsünk ki 30 szelvényt úgy, hogy az 1-25 közötti számpárt lefedjék; 21 szelvényt úgy, hogy a 26-46 közötti összes számpárt lefedjék; 21 szelvényt úgy, hogy a 47-67 közötti összes számpárt lefedjék és 28 szelvényt úgy, hogy a 68-90 közötti összes számpárt lefedjék. Miért lesz így legalább két találatunk?)

A szintlépéshez hasznos ismerni két tankönyvet (Szilasi Zoltán: Bevezetés a véges geometriába, 2015; Reiman István: A geometria és határterületei, 2001) és egy tudományos cikket (Z. Füredi, G. J. Székely, Z. Zubor: On the Lottery Problem, 1995). További szükséges ismeretek (geometria, algebra, elemi matematika, kombinatorika): projektív geometria, véges projektív sík, Kirkman iskoláslány problémája, Fano-sík (mint algebrai és geometriai leképezés), Steiner-rendszer (ponthalmaz, amely elemszáma 6k+1 alakú prím), néhány konstruktív jellegű bizonyítás, skatulya-elv.

Az előadás a feladat megoldásához vezető útról szólt. Az eredmény előtti utolsó előtti lépés ezt jelenti (Java program konzolra kiírt szövege):

Végül ismertettem néhány lehetőséget az algoritmus vizsgálatára és az implementált Java forráskód tesztelésére.

Köszönöm Kupcsikné Fitus Ilona kolléganőnek, hogy a jubileumi Ratkó István emlékest szervezőjeként előadónak felkért. Örömmel csatlakoztam újra. A prezentációmat a résztvevőkkel megosztottam. Köszönöm az érdeklődő kollégáknak és hallgatóknak a részvételt és a pozitív visszajelzéseket. Az emlékestek programjai elérhetők. Ajánlom lottószelvény címkénket is, mert a téma igazi örökzöld.

Egy matematika érettségi feladat megoldása programozással 2021

érettségi logó

érettségi logóA 2021-es középszintű matematika érettségi feladatsor 12. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, megszámolás, kiválogatás. Többféle megoldás/megközelítés is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

A háromjegyű pozitív egész számok közül véletlenszerűen kiválasztunk egyet. Mennyi annak a valószínűsége, hogy a kiválasztott szám számjegyei különbözők? Megoldását részletezze!

1. megoldás

Az 1. megoldás egymásba ágyazott ciklusokkal behelyettesíti a szóba jöhető 900 db háromjegyű szám számjegyeit. A feltétel 648 esetben teljesül. Három számjegy azonosságát két részfeltétel és kapcsolatával eldönthetnénk a trichotómia miatt. Három számjegy különbözőségéhez három részfeltétel és kapcsolatából áll össze a feltétel. A válasz a kedvező és összes eset aránya/hányadosa, azaz 0,72. Másképpen 648 db szám a 900 db háromjegyű szám közül. A megoldás lépésszáma 900.

2. megoldás

Az egymásba ágyazott ciklusok lépésszáma összeszorzódik. A legbelső ciklus az előtte lévő feltételtől függően kevesebbszer is végrehajtódhat, hiszen a százas és tízes helyiértéken lévő számjegyek egyezése esetén nincs értelme az egyes helyiértéken lévő számjegy vizsgálatának. Így a 2. megoldás lépésszáma 810, azaz 10%-kal kevesebb. Ez a három részből álló feltétel két részre bontásával érhető el.

3. megoldás

A 3. megoldásban egyetlen ciklus végzi a vizsgálatot, a megszámolást. A ciklusváltozó már nem számjegy, hanem maga a háromjegyű szám, amiről döntést kell hozni: különbözik-e mindegyik számjegye vagy sem. Három beszédes nevű segédváltozó segít értelmezni a Java forráskódot. Ezek az egész osztás és a maradékos osztás műveleteivel állíthatók elő.

4. megoldás

A 4. megoldás logikai visszatérési értékű segédfüggvényt alkalmaz. Ez egy menekülőutas megoldás. Ha kizáró feltétel szerint már döntést tudunk hozni (például megegyezik a százas és a tízes helyiértéken lévő számjegy), akkor hamis értékkel menekülünk. Egyébként ág nélkül ezután következhet az egyes helyiértéken lévő számjegy összehasonlítása a többivel. A második feltétel az eddigiekhez képest tagadott, mert a menekülés a cél. Ha nincs menekülés amiatt, hogy volt két megegyező számjegy, akkor – a feltételek egymásra épülése miatt – nincs más hátra, mint igaz értékkel visszatérni (ami azt jelenti, hogy nem volt egyezés, azaz minden számjegy különbözött).

5. megoldás

Az 5. megoldás segédfüggvénye a háromjegyű szám esetén a különböző számjegyek darabszámával tér vissza. A röptében előállított százaz, tízes, egyes helyiértékeken lévő számjegyekből folyam adatszerkezet készül, aminek feldolgozását a Stream API műveletei (egyediesítő, megszámoló) végzik el. Ezt a vezérlő ciklusban hárommal összehasonlítva léptethető a megszámolást megvalósító változó, hiszen ha teljesül a feltétel, akkor eggyel több megfelelő szám van, mint előtte volt.

6. megoldás

Az 6. megoldás újra másképpen közelít. Ha könnyebbnek tűnik az a feltétel, hogy mikor nem jó (kedvezőtlen) nekünk egy szám, akkor beépíthetjük ezt is. Megszámoljuk azokat a háromjegyű számokat, amelyeknél egy vagy két számjegy azonos, majd ez kivonjuk a háromjegyű számok darabszámából.

7. megoldás

A 7. megoldás már mindent folyamokkal old meg, azok képességeire építve. Az összes háromjegyű számot előállítja, majd rajtuk kiválogatás programozási tételt (szűrőt) használ (az 5. megoldás segédfüggvényére építve), végül a folyamban maradó számokat megszámolja. Ez a megoldás már olyan haladóknak való, akik magabiztosan építik össze a Stream API műveleteit és a lambda kifejezéseket. Mindent egyben. Persze hol itt a hatékonyság? Hozzászólásokban megbeszélhetjük.

8. megoldás

A 8. megoldás szintén folyam adatszerkezettel működik, de négy egymást követő lépésben végez szűrést (kiválogatást). A 900 db háromjegyű számból indulunk ki. Az 1. szűrő kihagyja a 9 db AAA számot, amelyek számjegyei azonosak és így marad utána 891 db szám. A 2. szűrő után marad 810 db szám, mert kimarad az a 81 db AAB alakú szám (ahol a százas és tízes helyiértéken lévő számjegyek megegyeznek) az összesen 90 db-ból, ami még a folyamban maradt az 1. szűrő után. A 3. szűrő kihagy 81 db ABB alakú számot és meghagy 729 db számot. A 4. szűrő kihagy 80 db ABA alakú számot és meghagy 648 db ABC alakú számot.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, valamint 21-24. óra: Objektumorientált programozás, 2. és 3. rész alkalmaihoz kötődik.