Egy matematika érettségi feladat megoldása programozással 2021

érettségi logó

érettségi logóA 2021-es középszintű matematika érettségi feladatsor 12. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, megszámolás, kiválogatás. Többféle megoldás/megközelítés is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

A háromjegyű pozitív egész számok közül véletlenszerűen kiválasztunk egyet. Mennyi annak a valószínűsége, hogy a kiválasztott szám számjegyei különbözők? Megoldását részletezze!

1. megoldás

Az 1. megoldás egymásba ágyazott ciklusokkal behelyettesíti a szóba jöhető 900 db háromjegyű szám számjegyeit. A feltétel 648 esetben teljesül. Három számjegy azonosságát két részfeltétel és kapcsolatával eldönthetnénk a trichotómia miatt. Három számjegy különbözőségéhez három részfeltétel és kapcsolatából áll össze a feltétel. A válasz a kedvező és összes eset aránya/hányadosa, azaz 0,72. Másképpen 648 db szám a 900 db háromjegyű szám közül. A megoldás lépésszáma 900.

2. megoldás

Az egymásba ágyazott ciklusok lépésszáma összeszorzódik. A legbelső ciklus az előtte lévő feltételtől függően kevesebbszer is végrehajtódhat, hiszen a százas és tízes helyiértéken lévő számjegyek egyezése esetén nincs értelme az egyes helyiértéken lévő számjegy vizsgálatának. Így a 2. megoldás lépésszáma 810, azaz 10%-kal kevesebb. Ez a három részből álló feltétel két részre bontásával érhető el.

3. megoldás

A 3. megoldásban egyetlen ciklus végzi a vizsgálatot, a megszámolást. A ciklusváltozó már nem számjegy, hanem maga a háromjegyű szám, amiről döntést kell hozni: különbözik-e mindegyik számjegye vagy sem. Három beszédes nevű segédváltozó segít értelmezni a Java forráskódot. Ezek az egész osztás és a maradékos osztás műveleteivel állíthatók elő.

4. megoldás

A 4. megoldás logikai visszatérési értékű segédfüggvényt alkalmaz. Ez egy menekülőutas megoldás. Ha kizáró feltétel szerint már döntést tudunk hozni (például megegyezik a százas és a tízes helyiértéken lévő számjegy), akkor hamis értékkel menekülünk. Egyébként ág nélkül ezután következhet az egyes helyiértéken lévő számjegy összehasonlítása a többivel. A második feltétel az eddigiekhez képest tagadott, mert a menekülés a cél. Ha nincs menekülés amiatt, hogy volt két megegyező számjegy, akkor – a feltételek egymásra épülése miatt – nincs más hátra, mint igaz értékkel visszatérni (ami azt jelenti, hogy nem volt egyezés, azaz minden számjegy különbözött).

5. megoldás

Az 5. megoldás segédfüggvénye a háromjegyű szám esetén a különböző számjegyek darabszámával tér vissza. A röptében előállított százaz, tízes, egyes helyiértékeken lévő számjegyekből folyam adatszerkezet készül, aminek feldolgozását a Stream API műveletei (egyediesítő, megszámoló) végzik el. Ezt a vezérlő ciklusban hárommal összehasonlítva léptethető a megszámolást megvalósító változó, hiszen ha teljesül a feltétel, akkor eggyel több megfelelő szám van, mint előtte volt.

6. megoldás

Az 6. megoldás újra másképpen közelít. Ha könnyebbnek tűnik az a feltétel, hogy mikor nem jó (kedvezőtlen) nekünk egy szám, akkor beépíthetjük ezt is. Megszámoljuk azokat a háromjegyű számokat, amelyeknél egy vagy két számjegy azonos, majd ez kivonjuk a háromjegyű számok darabszámából.

7. megoldás

A 7. megoldás már mindent folyamokkal old meg, azok képességeire építve. Az összes háromjegyű számot előállítja, majd rajtuk kiválogatás programozási tételt (szűrőt) használ (az 5. megoldás segédfüggvényére építve), végül a folyamban maradó számokat megszámolja. Ez a megoldás már olyan haladóknak való, akik magabiztosan építik össze a Stream API műveleteit és a lambda kifejezéseket. Mindent egyben. Persze hol itt a hatékonyság? Hozzászólásokban megbeszélhetjük.

8. megoldás

A 8. megoldás szintén folyam adatszerkezettel működik, de négy egymást követő lépésben végez szűrést (kiválogatást). A 900 db háromjegyű számból indulunk ki. Az 1. szűrő kihagyja a 9 db AAA számot, amelyek számjegyei azonosak és így marad utána 891 db szám. A 2. szűrő után marad 810 db szám, mert kimarad az a 81 db AAB alakú szám (ahol a százas és tízes helyiértéken lévő számjegyek megegyeznek) az összesen 90 db-ból, ami még a folyamban maradt az 1. szűrő után. A 3. szűrő kihagy 81 db ABB alakú számot és meghagy 729 db számot. A 4. szűrő kihagy 80 db ABA alakú számot és meghagy 648 db ABC alakú számot.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, valamint 21-24. óra: Objektumorientált programozás, 2. és 3. rész alkalmaihoz kötődik.

 

Rómeó és Júlia

Vajon hogyan kerül elő a Rómeó és Júlia az it-tanfolyam.hu szakmai blogban témaként? Hiszen mégiscsak egy Shakespeare színműről/tragédiáról van szó. Vajon mit programozhatunk Java nyelven ehhez kötődően épp Valentin-napon? Mindjárt kiderül.

Tegyünk fel egy kérdést és próbáljunk rá válaszolni! Vajon ki szereti jobban a másikat? Rómeó vagy Júlia?

Induljunk el az adatforrásból, amihez alkalmazkodnunk kell. A színmű angol nyelven publikusan elérhető XML formátumban: The Tragedy of Romeo and Juliet. Az XML fájlok könnyen feldolgozhatók Java nyelven. Részletek a fájlból (görgethető):

Az XML fájl felépítését tanulmányozva (1-5 alapján) megállapíthatóak az alábbiak:

  • A színmű öt felvonásból áll, ezeket <ACT></ACT> csomópontok jelölik.
  • Egy „adagnyi” beszédet a <SPEECH></SPEECH> csomópont fog össze.
  • A csomópontban található, hogy ki beszél: ez a <SPEAKER></SPEAKER> elem. A mesélő, kar esetén ez az elem üres, és a null-t nem szabad feldolgozni.
  • A csomópontban találhatók a szabadvers kimondott sorai: ezek a <LINE></LINE> elemek. Legalább egy sor minden beszédben van, és nem tudjuk előre a számukat.
  • Nem következetes helyen a DOM-ban, többféleképpen beágyazva és önállóan is előfordulhatnak <STAGEDIR></STAGEDIR> elemek. Ezek a színmű Kosztolányi-féle magyar fordításában dőlt betűvel megjelenő – cselekvésre utaló – színpadi utasítások. Van köztük csók is, amit az XML-ből nem szabad feldolgozni, bár erősen ráutaló magatartás. 🙂
  • Nem tudjuk előre, hogy hány csomópont található a fájlban.

A Java program készítése, tesztelése közben – mintegy mellékesen – megtudhatjuk, hogy Rómeó 612 sorban 24075 betűnyi, Júlia 544 sorban 21855 betűnyi szöveget mond. Persze nem mindet egymásnak mondják. Eközben vajon hányszor mondják ki a szeret, szeretem, szeretlek szavakat? A ragoktól, toldalékoktól, kis- és nagybetűket nem megkülönböztetve és attól is eltekintve, hogy éppen kinek/kiknek mondják amit éppen mondanak, egy becsléshez elegendő, ha a love szóra fókuszálunk (számíthatna a loving alak is).

Az alábbi Java forráskód betölti az XML fájlt a memóriába. Ezután kiválogatja a beszédeket. Ha a beszélő élő ember (szereplő), akkor érdekes, hogy mit/miket mond. Ha ROMEO vagy JULIET mondja az adott sort, akkor azt a program kiválogatja két generikus listába ( romeoLineList és julietLineList) beszédnyi adagokban. Ez nem szétválogatás programozási tétel, mert nem minden beszéd minden sora kerül valahová. A kivételkezelés nem kidolgozott.

Könnyen megkaphatjuk, hogy Rómeó hány darab olyan sort mond, amely tartalmazza a love szót. Például ennek a lambda kifejezésnek kiíratva az eredményét a konzolra:

Könnyen megkaphatjuk Rómeótól a 53 sornyi szöveget is így:

Íme Rómeó kiválogatott sorai (az 5. sorban kétszer is előfordul a love, de ez most nem számít):

Hasonlóan megkaphatjuk Júlia 38 kiválogatott sorát is:

Próbáljunk válaszolni a fentiek alapján a feltett kérdésre! Következtethetünk arra, hogy Rómeó jobban szereti Júliát. Legalábbis többször említi. 53>38. Persze tudjuk, hogy mindez nem ilyen egyszerű. 🙂

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, 25-28. óra: Objektumorientált programozás 3. rész, valamint a Java EE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: XML feldolgozás alkalmaihoz kötődik.

Nagyon különböző megoldásokat készíthetünk és szerteágazóan gyakorolhatunk, ha:

  • az XML fájlt kézzel mentjük a webről és utána a helyi fájlrendszerből dolgozzuk fel,
  • az XML fájlt közvetlenül a webről, dinamikusan olvassuk,
  • csak beépített XML-feldolgozást használunk,
  • külső XML API-t használunk,
  • DOM, SAX, XSL, van-e DTD,
  • XPath kifejezésekkel adunk választ a kérdésre,
  • a fenti didaktikusan egyszerű megoldás helyett haladóbb eszközöket (például: Stream API-t) használunk.

Címkefelhő generálása

szófelhő logó

szófelhő logóA címkefelhők/szófelhők népszerűek, sok weboldalon megtalálhatóak. A CMS rendszerekben beépített szolgáltatás is lehet, vagy külön bővítmény/plugin is megvalósíthatja. Egy szövegben előforduló szavakból a gyakrabban előfordulókat nagyobb betűmérettel emeli ki. Eredménye lehet listás, táblázatos, esetleg képpé generált is. Kétféleképpen is megközelíthető, erre utal a Word Cloud és a Tag Cloud elnevezés. Utóbbi inkább egy blog taxonomiájához kapcsolódik és kategóriákra/címkékre érvényesül. A szakmai blogunkhoz is tartozik egy táblázatos címkefelhő. A szófelhő a szöveg betűméretén túl megjelenítheti a szavak előfordulását, például Java forráskód (31).

Példánkban tetszőleges szöveget dolgozunk fel. Ebből felépítünk egy előfordulást is mutató listás szófelhőt, amely rendezett, és a szavak betűmérete 32-16-ig változik. Azok a szavak kerülnek a szófelhőbe, amelyek legalább 5-ször előfordulnak. Kezelünk kivételeket is, például olyan szavakat, amiket nem érdemes szófelhőbe tenni. Lépésenként haladva ismertetjük a megvalósító forráskódot, és külön megjeleníthetők az egyes lépések részeredményei.

A Java programozási nyelv csomagjait, osztályait, interfészeit, metódusait, műveleteit használjuk. Különböző adatszerkezetek kerülnek elő: tömb, generikus lista, generikus map, generikus folyam. Építünk a Stream API szolgáltatásaira és a lambda kifejezésekre. A megvalósítás könnyen testre szabható, kezeli a tipikusan előforduló igényeket.

1. Szövegforrás előkészítése

Generálunk egy 10 bekezdésből álló szöveget a Lorem Ipsum – All the facts – Lipsum generator weboldalon és a későbbi feldolgozáshoz mentjük a Java projekt files mappájába  lorem.txt néven. A fájl mérete: 5781 bájt. Szövegfájl:

2. Szöveges tartalom előkészítése

A megadott útvonalról a java.nio csomag metódusaival betöltjük a szövegfájl tartalmát byte[]-be, majd az s szövegbe. A replace() metódus hívásaival eltávolítjuk a szövegből a sor és bekezdés végét jelző soremelés ( LF="\n") és kocsi vissza ( CR="\r") vezérlőkaraktereket, a vessző és a pont írásjeleket (mindet külön-külön cseréljük a semmire), végül kisbetűssé alakítjuk ( toLowerCase()) a szöveget. A szöveg 5563 db karakterből áll. Előkészített szöveg:

3. Szólista elkészítése

A szóközök mentén darabolva ( split()) a szöveget elkészül belőle egy névtelen szövegtömb ( String[]), amit rögtön átalakítunk ( Arrays.asList()) szöveg típusú generikus listává ( List<String>). A lista 826 db elemből áll. Generikus lista:

4. Csoportosítás és megszámolás

A szólistát csoportosítjuk és megszámoljuk, hogy az egyes szavak hányszor fordulnak elő (másképpen: egy-egy csoport hány elemű). Elkészül a wordCountMap generikus map, amely kulcs-érték párok halmaza (leképezés). A kulcs a szó ( String), az érték a darabszáma ( Long). Alkalmazkodunk ahhoz, hogy a csoportosítás során használt counting() megszámoló művelet Long típusú értéket ad vissza. 188 db kulcs-érték párt kapunk. Generikus map:

5. Szűrés és rendezés

A generikus map-et kétszer szűrjük ( filter() művelet) úgy, hogy a kivételeket tartalmazó exceptList-ben ne szerepeljen a szó, valamint csak a legalább 5-ször előforduló szavakat hagyjuk meg. 71 db elemből álló folyam marad. Ebből a maradékból készítünk rendezett generikus folyamot ( sortedWordCountStream). A sorted() művelet két kulcs-érték párt hasonlít össze. A rendezés érték/darabszám szerint ( getValue()) csökkenő, azon belül kulcs/szavak szerint ( getKey()) növekvő sorrendet biztosít. Másképpen: ha az értékek megegyeznek, akkor a növekvő sorrendet a szavak ábécé sorrendje határozza meg, egyébként a darabszámok csökkenő sorrendje dönti el. Most már könnyen látható, hogy a leggyakrabban előforduló kevés szóból 15 van, 14 előfordulás nincs… Rendezett generikus folyam:

6. Saját típusú listává konvertálás

Definiálunk egy WordCount POJO-t, String típusú word nevű, Long típusú count nevű, int típusú fontSize nevű tulajdonságokkal, getter/setter metódusokkal, és toString() függvénnyel.

A map() intermediate művelettel a rendezett generikus folyamot bejárva, előállítjuk a POJO/ WordCount  típusú kimeneti objektumok rendezett generikus listáját. Továbbra is 71 elemmel dolgozunk. Rendezett generikus lista:

7. Darabszámok összegyűjtése

A POJO típusú rendezett generikus listában lévő objektumoktól elkért darabszámok ( getCount() POJO függvény) közül a különbözőeket ( distinct() művelet) összegyűjtjük egy Long típusú generikus listába ( distinctCountList). Az egyediesítő művelet nincs hatással az adatok sorrendjére. Tízféle előfordulást kapunk. Generikus lista:

8. Betűméret lépésköze

A szófelhőben a szavak gyakorisága alapján határozzuk meg a betűméretet. A betűméret 32-ről indul és fokozatosan csökken 16-ig. A betűméret léptetéséhez a tízféle gyakoriság/előfordulás meghatározza a stepFontSize  lépésközt. Lépésköz:

9. Betűméret kiszámítása

Csoportváltást alkalmazunk és a csoportot gi-vel indexeljük. Egy csoportba azok a POJO objektumok tartoznak, amelyeknél a szavak előfordulása megegyezik. Az algoritmus 2. lépésében az aktuális csoportra érvényesen kiszámítjuk a betűméretet ( fontSize), ami az algoritmus 3. lépésében a csoportba tartozó minden POJO objektumnál beállításra kerül a setFontSize() POJO eljárással. Az algoritmus 4. lépésében léptetjük a csoport gi indexét. A POJO-k esetén először csak a word és count tulajdonságok kerültek beállításra, de most már a fontSize tulajdonság is értéket kapott. Generikus lista:

10. HTML tartalom előállítása

A generikus lista POJO objektumain végighaladva, a forEach() záró művelettel összeállítható a weboldal szófelhőt tartalmazó része ( sbHTML). A 71 db szóból álló szófelhő HTML forráskódjának mérete 3409 bájt. HTML forráskód:

Eredmény

Szöveges formában:

lorem ipsum szófelhő

Képként (a 3. lépés részeredményéből a WordClouds.com weboldalon generálva):

lorem ipsum szófelhő eredmény

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának több alkalmához is kötődik. A Stream API-val és a lambda kifejezésekkel sokszor foglalkozunk.

Stream API lambda kifejezésekkel

lambda kifejezés logo

lambda kifejezés logoKorábban blogoltunk már a Stream API-ról és a lambda kifejezésekről: Ismerkedjünk lambda kifejezésekkel! Most másképpen közelítve újra foglalkozunk a témával.

Tanfolyamainkon szinte minden adatszerkezethez, tömbhöz, kollekcióhoz, fájlkezeléshez kötődő témakörben használjuk mindkettőt. Áttekintjük az ezekhez szükséges minimális verziószámot, a szintaktika fejlődését, az együttes használat elvi és gyakorlati lehetőségeit. A szükséges alapfogalmakat definiáljuk: hozzárendelési szabály, funkcionális interfész, metódus referencia, alapértelmezett metódusok, típus kikövetkeztetés képessége, generikus és funkcionális programozás. párhuzamos adatfeldolgozás lehetőségei.

Összehasonlításokat is végzünk: a lambda előtti verziók lehetőségei, korlátai, tipikus lambda hibák, mikor mit érdemes és mit nem érdemes használni, paraméterek típusait megadjuk vagy elhagyjuk, hagyományos kollekciós műveletek (azért a generikusság előtti időkre már nem térünk ki) és folyam feldolgozás (adatforrás meghatározása, közbenső és végső műveletek).

Most azokat a Stream API-hoz és lambda kifejezésekhez kötődő bevezető mintapéldákat ismertetjük, amiket részletesen elemzünk tanfolyamaink szakmai moduljának kontakt óráin. Ezek közül közösen meg is írunk néhányat, kombinálunk is néhányat egy-egy összetett adatfeldolgozó művelet megvalósítása során. Programozási tételenként specifikáljuk a feladatokat és megmutatunk néhány megoldást.

1. Adatforrás

100 db olyan véletlen kétjegyű számot állítunk elő generikus listában, amelyek között biztosan előfordul legalább egyszer a 80.

2. Elemi programozási tételek

2.1. Sorozatszámítás

Kiírjuk, hogy mennyi a listában lévő számok összege:

2.2. Eldöntés

Két kérdésre adunk választ. Van-e a listában lévő számok között 35 (konkrét elem), illetve páros (adott tulajdonságú elem)?

2.3. Kiválasztás

Kiírjuk, hogy a biztosan előforduló (legalább 1 db közül balról az első) 80, hányadik helyen (index) található meg:

2.4. Keresés

Keressük a 35-öt az eldöntés és a kiválasztás összeépítésével:

2.5. Megszámolás

Kiírjuk, hogy hány db öttel osztható szám (adott tulajdonságú elem) található a listában:

2.6. Szélsőérték-kiválasztás

Kiírjuk a listában lévő legkisebb számot (értéket, nem indexet):

3. Összetett programozási tételek

3.1. Másolás

Készítünk egy másolatot a lista elemeiről (közben esetleg mindegyiket meg is változtathatjuk):

3.2. Kiválogatás

A listában lévő számok közül kiválogatjuk az öttel osztható számokat:

3.3. Szétválogatás

Külön-külön szétválogatjuk a listában lévő páros és páratlan számokat:

3.4. Unió

A korábban szétválogatott páros és páratlan számokat tartalmazó halmazok unióját állítjuk elő:

3.5. Metszet

A korábban szétválogatott páros és páratlan számokat tartalmazó halmazok metszetét állítjuk elő:

3.6. Összefésülés

A korábban szétválogatott páros és páratlan számokat összefésüljük:

4. A program eredménye a konzolon

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam, a Java EE szoftverfejlesztő tanfolyam és a Java adatbázis-kezelő tanfolyam szakmai moduljának több alkalmához és az orientáló moduljának 1-4. óra: Programozási tételek alkalmához is kötődik. A Stream API-val és a lambda kifejezésekkel sokszor foglalkozunk.

Korábban is blogoltunk már a Stream API-ról és a lambda kifejezésekről: Ismerkedjünk lambda kifejezésekkel!

Ismerkedjünk lambda kifejezésekkel!

lambda kifejezés logo

lambda kifejezés logoA Java 8-tól használhatunk lambda kifejezéseket, amivel hatékonyabban, rövidebben és könnyebben valósíthatunk meg tipikus műveleteket.

Korábban általában az eseménykezelést globálisan (interfészek implementálásával), vagy lokálisan (névtelen interfész implementálásával) oldottuk meg, illetve besegítettek adapterek is. Sok- és többféle eseménynél ez a forráskódunk elaprózódásához vezetett, ami nehézkes olvashatóságot és karbantarthatóságot eredményezett.

A lambda kifejezés egy olyan kódrészlet, amelyben valamihez hozzárendelünk valamit, például egy metódus paraméteréhez a végrehajtandó forráskódot ( x -> y). Ehhez építünk a funkcionális interfészekre és a metódus referenciákra (szintén Java 8-tól), illetve a típus kikövetkeztetés képességére is (Java 7-től).

A kiválogatás programozási tételt valósítjuk meg többféle implementációval, felhasználva a Java nyelv újdonságait, és a fentieken kívül még a Stream API-t is.

Adatforrás

Először is kellenek adatok, hiszen azokat dolgozzuk fel. Egy Termek osztályú egyszerű POJO-val dolgozunk, nev és ar tulajdonságokkal, generált konstruktorral, getter metódusokkal és toString()-gel. Az adatforrást biztosító absztrakt Lista ősosztályban a POJO-kból felépítünk egy termekLista nevű generikus listát (például CSV vagy XML fájlból beolvasva az összetartozó adatokat) – listaFeltolt() eljárás – és implementálunk egy univerzálisan használható listaKiir(String uzenet, List termekLista) eljárást is.

Örökítünk három utódosztályt a Lista osztályból, amelyek különbözőképpen dolgozzák fel a termekLista-t, bemutatva a fejlődés útját, illetve a rendelkezésre álló lehetőségeket.

Válogassunk a termékek közül négyféleképpen és adjuk vissza azon termékeket, amelyek:

  • limit alatti áron kaphatók,
  • ára limit1 és limit2 közé esik (zárt intervallumban),
  • neve adott szöveggel kezdődik (kis- és nagybetű különbözik),
  • neve adott szöveget tartalmaz (kis- és nagybetű nem különbözik)!

1. változat

Hagyományos megközelítéssel a fentiek megvalósításához külön egy-egy függvény tartozik, ahogyan az alábbiakban látható:

A termekListaLimitAr1() függvényben látható ötféle lehetőség a kiválogatásra a termekLista-ból:

  • //1: hagyományos, index alapú változat,
  • //2: iterátorra közvetlenül építő változat,
  • //3: bejáró ciklus, iterátorra közvetve építő változat,
  • //4: Stream API-ra építő változat, kiválogatás lambda-kifejezéssel ( filter), a megmaradó termékekre végrehajtandó forEach művelet lambda kifejezéssel,
  • //5: Stream API-ra építő változat, kiválogatás lambda-kifejezéssel ( filter), a megmaradó termékeket összegyűjtő/leképező collect művelettel.

Jól megfigyelhető, hogy négy függvény vázszerkezete megegyezik, és csupán a filter-ben található lambda-kifejezések különböznek. Ez a megoldás meglehetősen redundáns, nem általánosítható, valamint további műveletek megvalósítása további függvények implementálását igényli.

2. változat

Őrizzük meg a négyféle funkciót, sőt tegyük lehetővé, hogy ez tetszőlegesen bővíthető legyen. Használjunk saját generikus, funkcionális Feltetel interfészt saját döntés megvalósítását biztosítani tudó implementálandó teszt() függvénnyel, az alábbiak szerint:

A termekListaFeltetel() függvény paramétere a saját Feltetel interfészünket implementáló névtelen osztály példánya, amely felhasználható:

  • //6: ciklusban egyszerű feltételként,
  • //7: Stream API filter műveletében megadott lambda-kifejezésben,
  • //8: a listaKiir() metódusban paraméterként átadva névtelen osztály példányaként,
  • //9-től: a listaKiir() metódusban paraméterként átadva lambda-kifejezésként.

Látszik, hogy többféle kiválogató művelethez egyetlen implementált függvény szükséges. Ez a megoldás már jóval általánosabb.

3. változat

A saját interfész helyett használjuk fel a beépített Predicate generikus, funkcionális interfészt, építve annak test() függvényére az alábbiak szerint:

Belépési pont

Végül következzen a közös belépési pont, amelyben tetszőlegesen aktiválható és tesztelhető mindhárom változat működése:

Mit ír ki a program a konzolra?

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, 25-28. óra: Objektumorientált programozás 3. rész, valamint a Java EE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: XML feldolgozás alkalmaihoz kötődik.

Máskor is blogolunk a témakörben: Stream API lambda kifejezésekkel.