Egy matematika érettségi feladat megoldása programozással 2023

érettségi logó

érettségi logó

A 2023-as középszintű matematika érettségi feladatsorból az 5. feladat alkalmasnak bizonyult arra, hogy a programozás eszköztárával oldjuk meg. Rögtön többféleképpen is, hogy összehasonlíthatóak legyenek egymással. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor letölthető az oktatas.hu-ról.

5. feladat

Adja meg a 420 és az 504 legnagyobb közös osztóját! Megoldását részletezze!

Íme kulcsszavakban, mit érdemes átgondolni a megoldás előtt: számelmélet alaptétele, prímfelbontás (prímtényezős felbontás, faktorizáció), osztópár, prímek szorzata, prímtényezők szorzata, kanonikus alak, euklideszi algoritmus.

1. megoldás

Az első megoldás az euklideszi algoritmus alkalmazása. A metódus paraméterezhető. Pozitív paramétereket vár és képes kiírni a konzolra a két szám legnagyobb közös osztóját. A módszer alapötlete: a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. Ezzel csökken a nagyobb szám, így a cserék ismétlésével egyre kisebb számokat kapunk, amíg a két szám egyenlővé nem válik. Ez az eddigi számpároknak, így az eredeti számpárnak is a legnagyobb közös osztója. Az eredményt az utolsó nem nulla maradék while(m!=0) adja meg int lnko=b;. Az algoritmus lépésszáma csökkenthető, ha a>b, de ennek ellenőrzése nélkül is működik. Mivel a feladat kéri a megoldás részletezését, így aktiválva a megjegyzésbe tett forráskódokat, a kiírásból könnyen érthető, mi és hogyan történik:

A konkrét esetben a metódus eredménye: lnko (420; 504) = 84. Nagyobb számok esetében „beszédesebb” a program kiírása, több lépésben írja ki a megoldáshoz vezető utat, ezért érdemes többféle paraméterrel is tesztelni a metódust.

2. megoldás

A második megoldás a prímtényezős felbontásokon alapul. Mindkét szám esetén gyűjtsük össze listában ezeket, majd vegyük a két lista közös részét. (Ha lista helyett halmazok lennének, akkor metszet programozási tétel lenne.) A generikus listákba prímszámok kerülnek és bármelyik többször is előfordulhat. (Ezért most a leghosszabb közös részsorozat(ok) előállítása szükséges.) Addig osztjuk a számot 2-vel, amíg lehet, utána következik a többi prímosztó, amíg vannak. Érdemes több metódusra szétosztani a megoldást, mert jóval áttekinthetőbb és karbantarthatóbb Java forráskódot eredményez. A beszédes változó, objektum és metódusnevek is segítenek a megértésben. A második megoldás természetesen ugyanazt az eredményt adja, mint az első megoldás. Aktiválva a megjegyzésbe tett forráskódokat, a kiírásból most is könnyen érthetővé válik (középiskolás matematikaóra-szerűen), mi és hogyan történik:

Kanonikus alakban: 420 = 22 * 3 * 5 * 7, 504 = 23 * 32 * 7, így lnko (420; 504) = 22 * 3 * 7. Azaz összeszorozzuk a közös prímtényezőket az előforduló legkisebb hatványon.
A megoldás erősen épít a generikus kollekciók esetén jól használható Stream API lambda kifejezéseire. Ezeket most nem részletezem, helyette ajánlom a szakmai blogból a lambda kifejezés címkét.

Érdemes átgondolni

  • Nagy prímszámok esetén az euklideszi algoritmus nem hatékony. Az algoritmus végrehajtása kifejezetten lassú például a Fibonacci-számok esetén. A prímtényezőkre bontás feltételezett bonyolultságát számos kriptográfiai algoritmus használja ki. Vannak különleges esetek is, például: egyforma számok, az egyik szám 1, a két szám egymás többszöröse.
  • A feladat nem kérte a legkisebb közös többszörös meghatározását, de ha tudjuk a lnko(a, b)-t, akkor abból könnyen adódik a lkkt(a, b)=a*b/lnko(a, b).
  • A legnagyobb közös osztó tulajdonságait megismerve az euklideszi algoritmus könnyen optimalizálható. Számos esetben ellenőrzést végezhetünk, illetve triviális alapesetek is vannak. Létezik kiterjesztett euklideszi algoritmus is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 9-12. óra: Metódusok, rekurzió, valamint 17-28. óra: Objektumorientált programozás alkalmaihoz kötődik.

Egy matematika érettségi feladat megoldása programozással 2021

érettségi logó

érettségi logóA 2021-es középszintű matematika érettségi feladatsor 12. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, megszámolás, kiválogatás. Többféle megoldás/megközelítés is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

A háromjegyű pozitív egész számok közül véletlenszerűen kiválasztunk egyet. Mennyi annak a valószínűsége, hogy a kiválasztott szám számjegyei különbözők? Megoldását részletezze!

1. megoldás

Az 1. megoldás egymásba ágyazott ciklusokkal behelyettesíti a szóba jöhető 900 db háromjegyű szám számjegyeit. A feltétel 648 esetben teljesül. Három számjegy azonosságát két részfeltétel és kapcsolatával eldönthetnénk a trichotómia miatt. Három számjegy különbözőségéhez három részfeltétel és kapcsolatából áll össze a feltétel. A válasz a kedvező és összes eset aránya/hányadosa, azaz 0,72. Másképpen 648 db szám a 900 db háromjegyű szám közül. A megoldás lépésszáma 900.

2. megoldás

Az egymásba ágyazott ciklusok lépésszáma összeszorzódik. A legbelső ciklus az előtte lévő feltételtől függően kevesebbszer is végrehajtódhat, hiszen a százas és tízes helyiértéken lévő számjegyek egyezése esetén nincs értelme az egyes helyiértéken lévő számjegy vizsgálatának. Így a 2. megoldás lépésszáma 810, azaz 10%-kal kevesebb. Ez a három részből álló feltétel két részre bontásával érhető el.

3. megoldás

A 3. megoldásban egyetlen ciklus végzi a vizsgálatot, a megszámolást. A ciklusváltozó már nem számjegy, hanem maga a háromjegyű szám, amiről döntést kell hozni: különbözik-e mindegyik számjegye vagy sem. Három beszédes nevű segédváltozó segít értelmezni a Java forráskódot. Ezek az egész osztás és a maradékos osztás műveleteivel állíthatók elő.

4. megoldás

A 4. megoldás logikai visszatérési értékű segédfüggvényt alkalmaz. Ez egy menekülőutas megoldás. Ha kizáró feltétel szerint már döntést tudunk hozni (például megegyezik a százas és a tízes helyiértéken lévő számjegy), akkor hamis értékkel menekülünk. Egyébként ág nélkül ezután következhet az egyes helyiértéken lévő számjegy összehasonlítása a többivel. A második feltétel az eddigiekhez képest tagadott, mert a menekülés a cél. Ha nincs menekülés amiatt, hogy volt két megegyező számjegy, akkor – a feltételek egymásra épülése miatt – nincs más hátra, mint igaz értékkel visszatérni (ami azt jelenti, hogy nem volt egyezés, azaz minden számjegy különbözött).

5. megoldás

Az 5. megoldás segédfüggvénye a háromjegyű szám esetén a különböző számjegyek darabszámával tér vissza. A röptében előállított százaz, tízes, egyes helyiértékeken lévő számjegyekből folyam adatszerkezet készül, aminek feldolgozását a Stream API műveletei (egyediesítő, megszámoló) végzik el. Ezt a vezérlő ciklusban hárommal összehasonlítva léptethető a megszámolást megvalósító változó, hiszen ha teljesül a feltétel, akkor eggyel több megfelelő szám van, mint előtte volt.

6. megoldás

Az 6. megoldás újra másképpen közelít. Ha könnyebbnek tűnik az a feltétel, hogy mikor nem jó (kedvezőtlen) nekünk egy szám, akkor beépíthetjük ezt is. Megszámoljuk azokat a háromjegyű számokat, amelyeknél egy vagy két számjegy azonos, majd ez kivonjuk a háromjegyű számok darabszámából.

7. megoldás

A 7. megoldás már mindent folyamokkal old meg, azok képességeire építve. Az összes háromjegyű számot előállítja, majd rajtuk kiválogatás programozási tételt (szűrőt) használ (az 5. megoldás segédfüggvényére építve), végül a folyamban maradó számokat megszámolja. Ez a megoldás már olyan haladóknak való, akik magabiztosan építik össze a Stream API műveleteit és a lambda kifejezéseket. Mindent egyben. Persze hol itt a hatékonyság? Hozzászólásokban megbeszélhetjük.

8. megoldás

A 8. megoldás szintén folyam adatszerkezettel működik, de négy egymást követő lépésben végez szűrést (kiválogatást). A 900 db háromjegyű számból indulunk ki. Az 1. szűrő kihagyja a 9 db AAA számot, amelyek számjegyei azonosak és így marad utána 891 db szám. A 2. szűrő után marad 810 db szám, mert kimarad az a 81 db AAB alakú szám (ahol a százas és tízes helyiértéken lévő számjegyek megegyeznek) az összesen 90 db-ból, ami még a folyamban maradt az 1. szűrő után. A 3. szűrő kihagy 81 db ABB alakú számot és meghagy 729 db számot. A 4. szűrő kihagy 80 db ABA alakú számot és meghagy 648 db ABC alakú számot.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, valamint 21-24. óra: Objektumorientált programozás, 2. és 3. rész alkalmaihoz kötődik.

 

Rómeó és Júlia

Vajon hogyan kerül elő a Rómeó és Júlia az it-tanfolyam.hu szakmai blogban témaként? Hiszen mégiscsak egy Shakespeare színműről/tragédiáról van szó. Vajon mit programozhatunk Java nyelven ehhez kötődően épp Valentin-napon? Mindjárt kiderül.

Tegyünk fel egy kérdést és próbáljunk rá válaszolni! Vajon ki szereti jobban a másikat? Rómeó vagy Júlia?

Induljunk el az adatforrásból, amihez alkalmazkodnunk kell. A színmű angol nyelven publikusan elérhető XML formátumban: The Tragedy of Romeo and Juliet. Az XML fájlok könnyen feldolgozhatók Java nyelven. Részletek a fájlból (görgethető):

Az XML fájl felépítését tanulmányozva (1-5 alapján) megállapíthatóak az alábbiak:

  • A színmű öt felvonásból áll, ezeket <ACT></ACT> csomópontok jelölik.
  • Egy „adagnyi” beszédet a <SPEECH></SPEECH> csomópont fog össze.
  • A csomópontban található, hogy ki beszél: ez a <SPEAKER></SPEAKER> elem. A mesélő, kar esetén ez az elem üres, és a null-t nem szabad feldolgozni.
  • A csomópontban találhatók a szabadvers kimondott sorai: ezek a <LINE></LINE> elemek. Legalább egy sor minden beszédben van, és nem tudjuk előre a számukat.
  • Nem következetes helyen a DOM-ban, többféleképpen beágyazva és önállóan is előfordulhatnak <STAGEDIR></STAGEDIR> elemek. Ezek a színmű Kosztolányi-féle magyar fordításában dőlt betűvel megjelenő – cselekvésre utaló – színpadi utasítások. Van köztük csók is, amit az XML-ből nem szabad feldolgozni, bár erősen ráutaló magatartás. 🙂
  • Nem tudjuk előre, hogy hány csomópont található a fájlban.

A Java program készítése, tesztelése közben – mintegy mellékesen – megtudhatjuk, hogy Rómeó 612 sorban 24075 betűnyi, Júlia 544 sorban 21855 betűnyi szöveget mond. Persze nem mindet egymásnak mondják. Eközben vajon hányszor mondják ki a szeret, szeretem, szeretlek szavakat? A ragoktól, toldalékoktól, kis- és nagybetűket nem megkülönböztetve és attól is eltekintve, hogy éppen kinek/kiknek mondják amit éppen mondanak, egy becsléshez elegendő, ha a love szóra fókuszálunk (számíthatna a loving alak is).

Az alábbi Java forráskód betölti az XML fájlt a memóriába. Ezután kiválogatja a beszédeket. Ha a beszélő élő ember (szereplő), akkor érdekes, hogy mit/miket mond. Ha ROMEO vagy JULIET mondja az adott sort, akkor azt a program kiválogatja két generikus listába ( romeoLineList és julietLineList) beszédnyi adagokban. Ez nem szétválogatás programozási tétel, mert nem minden beszéd minden sora kerül valahová. A kivételkezelés nem kidolgozott.

Könnyen megkaphatjuk, hogy Rómeó hány darab olyan sort mond, amely tartalmazza a love szót. Például ennek a lambda kifejezésnek kiíratva az eredményét a konzolra:

Könnyen megkaphatjuk Rómeótól a 53 sornyi szöveget is így:

Íme Rómeó kiválogatott sorai (az 5. sorban kétszer is előfordul a love, de ez most nem számít):

Hasonlóan megkaphatjuk Júlia 38 kiválogatott sorát is:

Próbáljunk válaszolni a fentiek alapján a feltett kérdésre! Következtethetünk arra, hogy Rómeó jobban szereti Júliát. Legalábbis többször említi. 53>38. Persze tudjuk, hogy mindez nem ilyen egyszerű. 🙂

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, 25-28. óra: Objektumorientált programozás 3. rész, valamint a Java EE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: XML feldolgozás alkalmaihoz kötődik.

Nagyon különböző megoldásokat készíthetünk és szerteágazóan gyakorolhatunk, ha:

  • az XML fájlt kézzel mentjük a webről és utána a helyi fájlrendszerből dolgozzuk fel,
  • az XML fájlt közvetlenül a webről, dinamikusan olvassuk,
  • csak beépített XML-feldolgozást használunk,
  • külső XML API-t használunk,
  • DOM, SAX, XSL, van-e DTD,
  • XPath kifejezésekkel adunk választ a kérdésre,
  • a fenti didaktikusan egyszerű megoldás helyett haladóbb eszközöket (például: Stream API-t) használunk.

Címkefelhő generálása

szófelhő logó

szófelhő logóA címkefelhők/szófelhők népszerűek, sok weboldalon megtalálhatóak. A CMS rendszerekben beépített szolgáltatás is lehet, vagy külön bővítmény/plugin is megvalósíthatja. Egy szövegben előforduló szavakból a gyakrabban előfordulókat nagyobb betűmérettel emeli ki. Eredménye lehet listás, táblázatos, esetleg képpé generált is. Kétféleképpen is megközelíthető, erre utal a Word Cloud és a Tag Cloud elnevezés. Utóbbi inkább egy blog taxonomiájához kapcsolódik és kategóriákra/címkékre érvényesül. A szakmai blogunkhoz is tartozik egy táblázatos címkefelhő. A szófelhő a szöveg betűméretén túl megjelenítheti a szavak előfordulását, például Java forráskód (50), címkefelhő (2).

Példánkban tetszőleges szöveget dolgozunk fel. Ebből felépítünk egy előfordulást is mutató listás szófelhőt, amely rendezett, és a szavak betűmérete 32-16-ig változik. Azok a szavak kerülnek a szófelhőbe, amelyek legalább 5-ször előfordulnak. Kezelünk kivételeket is, például olyan szavakat, amiket nem érdemes szófelhőbe tenni. Lépésenként haladva ismertetjük a megvalósító forráskódot, és külön megjeleníthetők az egyes lépések részeredményei.

A Java programozási nyelv csomagjait, osztályait, interfészeit, metódusait, műveleteit használjuk. Különböző adatszerkezetek kerülnek elő: tömb, generikus lista, generikus map, generikus folyam. Építünk a Stream API szolgáltatásaira és a lambda kifejezésekre. A megvalósítás könnyen testre szabható, kezeli a tipikusan előforduló igényeket.

1. Szövegforrás előkészítése

Generálunk egy 10 bekezdésből álló szöveget a Lorem Ipsum – All the facts – Lipsum generator weboldalon és a későbbi feldolgozáshoz mentjük a Java projekt files mappájába  lorem.txt néven. A fájl mérete: 5781 bájt. Szövegfájl:

2. Szöveges tartalom előkészítése

A megadott útvonalról a java.nio csomag metódusaival betöltjük a szövegfájl tartalmát byte[]-be, majd az s szövegbe. A replace() metódus hívásaival eltávolítjuk a szövegből a sor és bekezdés végét jelző soremelés ( LF="\n") és kocsi vissza ( CR="\r") vezérlőkaraktereket, a vessző és a pont írásjeleket (mindet külön-külön cseréljük a semmire), végül kisbetűssé alakítjuk ( toLowerCase()) a szöveget. A szöveg 5563 db karakterből áll. Előkészített szöveg:

3. Szólista elkészítése

A szóközök mentén darabolva ( split()) a szöveget elkészül belőle egy névtelen szövegtömb ( String[]), amit rögtön átalakítunk ( Arrays.asList()) szöveg típusú generikus listává ( List<String>). A lista 826 db elemből áll. Generikus lista:

4. Csoportosítás és megszámolás

A szólistát csoportosítjuk és megszámoljuk, hogy az egyes szavak hányszor fordulnak elő (másképpen: egy-egy csoport hány elemű). Elkészül a wordCountMap generikus map, amely kulcs-érték párok halmaza (leképezés). A kulcs a szó ( String), az érték a darabszáma ( Long). Alkalmazkodunk ahhoz, hogy a csoportosítás során használt counting() megszámoló művelet Long típusú értéket ad vissza. 188 db kulcs-érték párt kapunk. Generikus map:

5. Szűrés és rendezés

A generikus map-et kétszer szűrjük ( filter() művelet) úgy, hogy a kivételeket tartalmazó exceptList-ben ne szerepeljen a szó, valamint csak a legalább 5-ször előforduló szavakat hagyjuk meg. 71 db elemből álló folyam marad. Ebből a maradékból készítünk rendezett generikus folyamot ( sortedWordCountStream). A sorted() művelet két kulcs-érték párt hasonlít össze. A rendezés érték/darabszám szerint ( getValue()) csökkenő, azon belül kulcs/szavak szerint ( getKey()) növekvő sorrendet biztosít. Másképpen: ha az értékek megegyeznek, akkor a növekvő sorrendet a szavak ábécé sorrendje határozza meg, egyébként a darabszámok csökkenő sorrendje dönti el. Most már könnyen látható, hogy a leggyakrabban előforduló kevés szóból 15 van, 14 előfordulás nincs… Rendezett generikus folyam:

6. Saját típusú listává konvertálás

Definiálunk egy WordCount POJO-t, String típusú word nevű, Long típusú count nevű, int típusú fontSize nevű tulajdonságokkal, getter/setter metódusokkal, és toString() függvénnyel.

A map() intermediate művelettel a rendezett generikus folyamot bejárva, előállítjuk a POJO/ WordCount  típusú kimeneti objektumok rendezett generikus listáját. Továbbra is 71 elemmel dolgozunk. Rendezett generikus lista:

7. Darabszámok összegyűjtése

A POJO típusú rendezett generikus listában lévő objektumoktól elkért darabszámok ( getCount() POJO függvény) közül a különbözőeket ( distinct() művelet) összegyűjtjük egy Long típusú generikus listába ( distinctCountList). Az egyediesítő művelet nincs hatással az adatok sorrendjére. Tízféle előfordulást kapunk. Generikus lista:

8. Betűméret lépésköze

A szófelhőben a szavak gyakorisága alapján határozzuk meg a betűméretet. A betűméret 32-ről indul és fokozatosan csökken 16-ig. A betűméret léptetéséhez a tízféle gyakoriság/előfordulás meghatározza a stepFontSize  lépésközt. Lépésköz:

9. Betűméret kiszámítása

Csoportváltást alkalmazunk és a csoportot gi-vel indexeljük. Egy csoportba azok a POJO objektumok tartoznak, amelyeknél a szavak előfordulása megegyezik. Az algoritmus 2. lépésében az aktuális csoportra érvényesen kiszámítjuk a betűméretet ( fontSize), ami az algoritmus 3. lépésében a csoportba tartozó minden POJO objektumnál beállításra kerül a setFontSize() POJO eljárással. Az algoritmus 4. lépésében léptetjük a csoport gi indexét. A POJO-k esetén először csak a word és count tulajdonságok kerültek beállításra, de most már a fontSize tulajdonság is értéket kapott. Generikus lista:

10. HTML tartalom előállítása

A generikus lista POJO objektumain végighaladva, a forEach() záró művelettel összeállítható a weboldal szófelhőt tartalmazó része ( sbHTML). A 71 db szóból álló szófelhő HTML forráskódjának mérete 3409 bájt. HTML forráskód:

Eredmény

Szöveges formában:

lorem ipsum szófelhő

Képként (a 3. lépés részeredményéből a WordClouds.com weboldalon generálva):

lorem ipsum szófelhő eredmény

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának több alkalmához is kötődik. A Stream API-val és a lambda kifejezésekkel sokszor foglalkozunk.

Stream API lambda kifejezésekkel

lambda kifejezés logo

lambda kifejezés logoKorábban blogoltunk már a Stream API-ról és a lambda kifejezésekről: Ismerkedjünk lambda kifejezésekkel! Most másképpen közelítve újra foglalkozunk a témával.

Tanfolyamainkon szinte minden adatszerkezethez, tömbhöz, kollekcióhoz, fájlkezeléshez kötődő témakörben használjuk mindkettőt. Áttekintjük az ezekhez szükséges minimális verziószámot, a szintaktika fejlődését, az együttes használat elvi és gyakorlati lehetőségeit. A szükséges alapfogalmakat definiáljuk: hozzárendelési szabály, funkcionális interfész, metódus referencia, alapértelmezett metódusok, típus kikövetkeztetés képessége, generikus és funkcionális programozás. párhuzamos adatfeldolgozás lehetőségei.

Összehasonlításokat is végzünk: a lambda előtti verziók lehetőségei, korlátai, tipikus lambda hibák, mikor mit érdemes és mit nem érdemes használni, paraméterek típusait megadjuk vagy elhagyjuk, hagyományos kollekciós műveletek (azért a generikusság előtti időkre már nem térünk ki) és folyam feldolgozás (adatforrás meghatározása, közbenső és végső műveletek).

Most azokat a Stream API-hoz és lambda kifejezésekhez kötődő bevezető mintapéldákat ismertetjük, amiket részletesen elemzünk tanfolyamaink szakmai moduljának kontakt óráin. Ezek közül közösen meg is írunk néhányat, kombinálunk is néhányat egy-egy összetett adatfeldolgozó művelet megvalósítása során. Programozási tételenként specifikáljuk a feladatokat és megmutatunk néhány megoldást.

1. Adatforrás

100 db olyan véletlen kétjegyű számot állítunk elő generikus listában, amelyek között biztosan előfordul legalább egyszer a 80.

2. Elemi programozási tételek

2.1. Sorozatszámítás

Kiírjuk, hogy mennyi a listában lévő számok összege:

2.2. Eldöntés

Két kérdésre adunk választ. Van-e a listában lévő számok között 35 (konkrét elem), illetve páros (adott tulajdonságú elem)?

2.3. Kiválasztás

Kiírjuk, hogy a biztosan előforduló (legalább 1 db közül balról az első) 80, hányadik helyen (index) található meg:

2.4. Keresés

Keressük a 35-öt az eldöntés és a kiválasztás összeépítésével:

2.5. Megszámolás

Kiírjuk, hogy hány db öttel osztható szám (adott tulajdonságú elem) található a listában:

2.6. Szélsőérték-kiválasztás

Kiírjuk a listában lévő legkisebb számot (értéket, nem indexet):

3. Összetett programozási tételek

3.1. Másolás

Készítünk egy másolatot a lista elemeiről (közben esetleg mindegyiket meg is változtathatjuk):

3.2. Kiválogatás

A listában lévő számok közül kiválogatjuk az öttel osztható számokat:

3.3. Szétválogatás

Külön-külön szétválogatjuk a listában lévő páros és páratlan számokat:

3.4. Unió

A korábban szétválogatott páros és páratlan számokat tartalmazó halmazok unióját állítjuk elő:

3.5. Metszet

A korábban szétválogatott páros és páratlan számokat tartalmazó halmazok metszetét állítjuk elő:

3.6. Összefésülés

A korábban szétválogatott páros és páratlan számokat összefésüljük:

4. A program eredménye a konzolon

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam, a Java EE szoftverfejlesztő tanfolyam és a Java adatbázis-kezelő tanfolyam szakmai moduljának több alkalmához és az orientáló moduljának 1-4. óra: Programozási tételek alkalmához is kötődik. A Stream API-val és a lambda kifejezésekkel sokszor foglalkozunk.

Korábban is blogoltunk már a Stream API-ról és a lambda kifejezésekről: Ismerkedjünk lambda kifejezésekkel!