Programozási Hét 2024 – CodeWeek.eu

Programozási hét CodeWeek.eu

Programozási hét CodeWeek.eu

Az Európai Programozási Hét idén 2024. október 14-27-ig kerül megrendezésre. Ez egy önkéntesek által működtetett, alulról szerveződő kezdeményezés. Az önkéntesek saját országukban a Programozási Hét nagyköveteként népszerűsítik a programozást. Ehhez nyílt és ingyenes (online és offline) eseményeket hirdetnek meg a CodeWeek.eu weboldalon.

A Programozási Hét célja

  • a programozással való alkotás megünneplése,
  • az emberek felvértezése képességekkel,
  • az emberek összekapcsolása,
  • még több ember érdeklődésének felkeltése a tudomány, a technológia, a mérnöki ismeretek és a matematika iránt.

Miért jó ez az érdeklődőknek/résztvevőknek?

  • A programozás szórakoztató!
  • Programozni kreatív tevékenység! Az emberiség a kezdetektől fogva alkot: agyagból, kőből, téglából, papírból vagy fából. Manapság programozással is alkotunk.
  • A programozás felvértez! Sokkal többre is képesek vagyunk annál, hogy csak fogyasszuk a digitális tartalmat; programozással sokféle dolgot alkothatunk, és azokat milliók számára elérhetővé tehetjük. Létrehozhatunk weboldalakat, játékokat, irányíthatunk egy számítógépet vagy egy robotot.
  • Értsük meg a világot! Manapság egyre több minden össze van kapcsolva. Ha némi rálátásunk van arra, hogy mi történik a színfalak mögött, akkor a világot is jobban megérthetjük.
  • A programozás ötleteket kelt életre és alapvető kompetenciákat fejleszt. Megtanítja nekünk a számítógépes gondolkodást, fejleszti a problémamegoldást, kreativitást, kritikus érvelést, analitikus gondolkodást, valamint csapatmunkára késztet.
  • A programozás alakítja a jövőnket. Manapság a munkahelyek 90%-a digitális készségeket, köztük programozási ismereteket követel a munkavállalóktól.

2015-től veszünk részt az esemény szervezésében, programozást népszerűsítő előadások, laborgyakorlatok meghirdetésével és megtartásával. 2023-ban világszerte 80+ országban 4+ millió érdeklődő résztvevő csatlakozott. Ajánljuk korábbi beszámolóinkat is szakmai blogunkból, lásd: CodeWeek.eu címke.

Meghirdetett eseményeink

2024-ben nyolc it-tanfolyam.hu-s eseményt hirdettünk meg a Programozási Hét 2024 rendezvényen.
Helyszín: 1056 Budapest, Váci utca 47., 3. emelet, megközelítés
Dátum és időpont: 2024. október 26. 9:00-12:00-ig
Az események ingyenesek voltak, de a részvétel előzetes regisztrációhoz kötött.

Rendezvényünk plakátja

A rendezvény jó hangulatban telt, 50+ érdeklődőt vonzott. Többen rendszeresen visszatérő vendégek voltak, például a tavaszi Digitális Témahét, vagy a szeptember végi Kutatók éjszakája rendezvényeinkről. Eltérő belső motivációval érkeztek, ezek kulcsszavakban: kíváncsiság, pályaorientáció, karrierváltás, mesterséges intelligencia, programozási trükkök, robotika. Igazán tartalmasan telt el idén is ez a rendezvényre szánt három óra. Köszönöm oktató kollégáimnak és 2 korábbi hallgatónknak, hogy előadóként részt vettek a Programozási hét 2024 – CodeWeek.eu rendezvényünkön. Prezentációinkat tanfolyamaink hallgatói számára – a témához kapcsolódó témakörökhöz, ILIAS-ra feltöltve – tesszük elérhetővé.

9:00-9:40 – Szegedi Kristóf: Játékprogramok heurisztikáinak elemzése
A tudásalapú rendszerek elméleti alapjaihoz tartoznak a mesterséges intelligencia különböző megoldáskereső módszerei, az állapottér-reprezentáció és a klasszikus keresési stratégiák, heurisztikák. Egy játék állapotait valahogyan nyilvántartjuk egy adatszerkezetben. Lehet, hogy néhány lépést előre kalkulálunk (kiterjesztünk) és ezek elágazásaiból fát (fa adatszerkezet) tudunk építeni. Ezeket hatékonyan karban kell tartani konstrukciós és szelekciós műveletekkel. Heurisztika alapján döntéseket is kell hozni. Vajon melyik állapot a jobb, vagy kevésbé rossz, legalább olyan jó mint ahol járunk? Ki kell értékelni és abba az irányba érdemes haladni, amelyben végül a döntések sokasága igazolja és egyben adja a nyerő stratégiát. Ha ez nem megy, akkor még mindig játszhatunk nem vesztő stratégiával, azaz lehet cél a hosszabb játékmenet, vagy akár a döntetlen állapot is. Az előadás ismertet néhány tipikus problémaszituációt, játékteret leképező reprezentációs gráfbeli navigációt és összehasonlít néhány fabejáró/gráfbejáró stratégiát. A program mindhárom Java tanfolyamunk orientáló moduljához kötődik. Előismeretként feltételezünk némi jártasságot a programozási alapismeretek, programozási tételek, ciklusok, metódusok, tömbök témakörökből.

9:45-10:25 – Kaczur Sándor: Euler állatos feladatának megoldása hatékonyan programozva és geometriai megközelítéssel
Az Euler állatos feladataként ismert matematikai/logikai feladvány megoldási lehetőségeit mutatja be az előadó. Kétféleképpen közelítünk. Az egyik út a programozás eszköztárára és a hatékonyságra fókuszálva, Java nyelven kódolva, konzolos programot fejlesztve, egyre kevesebb lépésben oldja meg a feladatot. A másik út a geometriai megközelítés, amelyet szintén Java nyelven, de már grafikus felhasználói felülettel rendelkező program által, a megoldáshoz fokozatosan közelítve ábrázolja a szükséges lépéseket. A program a Java SE szoftverfejlesztő tanfolyamunk tematikájához kapcsolódik. Előismeretként feltételezünk némi jártasságot programozási ismeretek, programozási tételek, ciklusok, metódusok, tömbök, listák, halmazok, lambda kifejezések, grafikus felhasználói felület témakörökből.

10:30-11:10 – Kiss Balázs: A kognitív robotika szakterülete
Kiindulunk két problémából. Az egyik: az ipari robotok – többnyire a balesetveszély miatt – az emberektől elzárt területeken működnek. A másik: sok algoritmus nagyon erőforrás- és számításigényes. Áttekintjük, milyen együttes megoldások léteznek az említett problémákra. Vajon hogyan kapcsolódik össze ez a két különböző probléma? Mutatunk rájuk néhány példát. Érintjük az ember-robot interakció tipikus lehetőségeit, és az evolúciós robotika határait, lehetőségeit. A gépi tanulásban rejlő potenciálra 3-3 markáns kiváló és téves példát is mutatunk. Tipikus problémaszituációkon keresztül tekintjük át, hogyan érdemes modellezni, tervezni, amikor a kognitív robotika eszköztárával szeretnénk megoldani egy feladatot, problémát – akár KKV szinten is. A program mindhárom Java tanfolyamunk orientáló moduljához kötődik.

11:15-11:55 – Hollós Gábor: Gondolkodjunk logikusan!
Az előadás során áttekintjük az intelligencia, a kreatív problémamegoldó és logikus gondolkodás összefüggéseit és izgalmas feladatokból válogatva közösen megoldunk néhány fejtörő feladatot. Néhány példa: Hány éves a kapitány?CHOO + CHOO = TRAIN, Logikus gondolkodás teszt. Minden feladathoz adunk rávezető példákat – ha esetleg egyik-másik nem menne, akkor ebből megtudod, miket érdemes gyakorolni, hogy menjen. A program mindhárom Java tanfolyamunk orientáló moduljához kötődik. Előismeretként feltételezünk némi jártasságot az algoritmusok, programozási alapismeretek, programozási tételek témakörökből.

 

9:00-9:45 – Kiss Balázs: Képekből Java eszközökkel készített átmeneti animáció lehetőségei
Az előadó példákon keresztül mutatja be az animációkészítés lehetőségeit. Eszközként a Java beépített grafikus API szolgáltatásaiból indul ki, majd áttér többféle kiegészítő API funkcióira. Összehasonlítást is tesz: kitér az előnyökre/hátrányokra és konkrét javaslatokat tesz saját tapasztalataira építve. Megkülönbözteti a fixen kódolt és az interaktív módon, eseménykezelést is tartalmazó animációk különbségeire, lehetőségeire, korlátaira. A bemutatott és kipróbálható példák kiválóan használhatók élményszerű gyakorlásra, rendszerező összefoglalásra grafikus felhasználói felületű Java szoftverfejlesztés, Java programozás témában (asztali és webes alkalmazások készítésétől függetlenül). A program mindhárom Java tanfolyamunk szakmai moduljához kötődik.

9:50-10:25 – Hollós Gábor: Gráfbejáró algoritmusok hatékonyságának elemzése
Az előadás összehasonlítja a 12 db programozási tétel iteratív, rekurzív és funkcionális megvalósításainak hatékonyságát. Fókuszba a funkcionális megoldásokat helyezi. A bemutatott keretrendszer mér lépésszámot, memóriaigényt és bonyolultságot. Nem egyértelműen a jó, jobb, rossz, rosszabb értékelés a cél, hanem inkább az, hogy tudjunk a programozási tételek közül megfelelőt választani adott problémához, feladathoz, algoritmushoz, adatszerkezethez. A program a Java SE szoftverfejlesztő tanfolyamunk és a Java EE szoftverfejlesztő tanfolyamunk tematikájához kötődik. Előismeretként feltételezünk némi jártasságot a programozási alapismeretek, programozási tételek, ciklusok, metódusok, tömbök, listák, halmazok, lambda kifejezések témakörökből.

10:30-11:10 – Kaczur Sándor: Számítástechnika vs. informatika vs. digitális kultúra
Az előadás áttekinti az elmúlt 30 év terminológiai változásait. A fókusz a tanárképzésre és az egyes tantervekre kerül. Néhány kérdésre megpróbálunk választ keresni/találni. Mi indokolta a változásokat? Mi miről-mire változott? Hová került a hangsúly? Mi volt az innovációnak tekinthető változás? Hogyan alakult a szabályozás, a jogi háttér? Hogyan alakultak át a tankönyvek és az online tananyagok? Milyen kompetencia- és tudáselemek kerültek ki a tematikából és kerültek be a tematikába? Hol tartunk most a NAT 2020-ban? Mi várható el attól a fiataltól, aki korábban informatikából érettségizett? És attól, aki már digitális kultúrából érettségizett? Milyen eltérések vannak a digitális kultúra tantárgy középszintű és az emelt szintű érettségi vizsga követelményeiben?

11:15-11:55 – Hatvani Bence, Hatvani Luca: Friss munkaerőpiaci tapasztalataink szoftverfejlesztőként
Mennyire könnyű ma szoftverfejlesztőként elhelyezkedni szakirányú felsőfokú végzettség nélkül? Milyen kihívásokkal találkozhatunk a felvételi folyamat során? Milyen elvárásokat támasztanak a munkaadók egy junior szakemberrel szemben? Hogyan telnek a beilleszkedés után a hétköznapok junior fejlesztőként kis létszámmal működő informatikai profilú kisvállalkozásnál? A tanfolyamainkon 2021-ben és 2023-ban végzett előadók karrierváltó junior szakemberként személyes tapasztalataikról számolnak be és válaszolnak a kérdésekre. A program a Java tanfolyamaink orientáló moduljához kötődik.

Dátumok csoportosítása

dátumintervallumok logó

dátumintervallumok logóEbben a Java projektben dátumok csoportosítását oldjuk meg, többféleképpen is. Mikor van erre szükség? Jelentés, kimutatás, riport, lista készítése során.

Példaként tekintsünk egy blogot. A blogban rendszeresen jelenik meg új tartalom (bejegyzés, poszt). Azért, hogy a blog hosszabb távon, sok bejegyzéssel is könnyen kereshető, átlátható, böngészhető legyen/maradjon a felhasználók, látogatók számára, célszerű:

  • taxonómia kialakítása. Ez kategóriákat és címkéket jelent. Ebből címkefelhő vagy szófelhő is készíthető, ahogyan erről blogoltunk már: Címkefelhő generálása.
  • marketing analitika használata. Ezek általában toplisták valamilyen könnyen hozzáférhető adat alapján. Például: látogatottság, népszerűség, eltöltött idő, hozzászólások száma, megosztások száma, egérmutató mozgása alapján hőtérkép. Ezek általában toplisták, amelyek eleje listázódik csökkenő sorrendben.
  • dátum szerint is csoportosítani a blog bejegyzéseit. Érdemes megjeleníteni a legújabbtól a régebbi felé haladó (retrospektív) listát, hierarchikus fa struktúrát, lenyíló panelt. Mindez kombinálható toplistával. A csoportosítás elvégezhető igény szerint tetszőlegesen, például évente, negyedévente, havonta.

Lássuk, hogyan lehet megvalósítani a dátumok csoportosítását Java programozás nyelven!

Milyen adatokra van szükség?

Egy megadott zárt dátumtartományban véletlenszerűen előállítunk néhány dátumot. Nem számít, hogy különböznek-e. A dátumokat tároló listát érdemes csökkenő sorrendben tárolni. Minden dátum múltbeli, így ez a sorrend a jelenhez legközelebbitől halad a legtávolabbi felé. Például a Java program ezekkel a dátumokkal dolgozik (lapozható):

Milyen eredményeket kaphatunk?

Az évenkénti csoportosítás így jelenik meg:

A havonkénti csoportosítás így jelenik meg (lapozható):

Természetesen blog esetén gyűjtőoldalra mutató hivatkozást kell tenni a megjelenő elemekre. Azok az évek és hónapok nem jelennek meg, ahol nincs dátum (blog bejegyzés).

Hogyan kapjuk meg az eredményeket?

Természetesen Java nyelven programozva készítünk megoldást, sőt többféle megoldást. Ezek szépen összevethetők és mindenki kiválaszthatja azt, amit szívesen használna. A dátumobjektumok tárolása generikus listában történik, aminek típusa LocalDate. A dátumok formátuma: DateTimeFormatter.ofPattern("yyyy.MM.dd.").

1. megoldás

Ez a hagyományosnak tekinthető megoldás. Végigjárja a dátumobjektumokat tartalmazó dateList dátumlista adatszerkezetet. Két egymásba ágyazott ciklussal csoportváltást valósít meg. Feltételezi – nem ellenőrzi -, hogy az adatok sorrendje megegyezik az eredmény kiírásának megfelelő sorrenddel. Amíg két egymást követő dátum GROUP_BY_FORMAT formátuma azonos, addig ugyanabba a csoportba tartoznak. A csoportváltáskor az eredmény TYPE_FORMAT formátumú. Közben a beépített megszámolás programozási tétel is működik.

A groupByDate1() függvény képes az évente és havonta csoportosítás megvalósítására. Mindez a paraméterezésén múlik. Évente csoportosít, ha így hívja meg a vezérlés:

Évenkénti csoportosítás során például a 2024.02.26. és a 2024.01.30. (dátumként, nem szövegként értelmezve) azért tartozik egy csoportba, mert a dátumobjektumoktól elkért év "2024" szövegként mindkettő esetében megegyezik.

A groupByDate1() függvény havonta csoportosít, ha így hívja meg a vezérlés:

Havonkénti csoportosítás során például a  2023.06.14. és a 2023.06.08. (szintén dátumként értelmezve) azért tartozik egy csoportba, mert mindkettő illeszkedik a "202306" szövegmintára.

2. megoldás

Ez a Stream API-t és funkcionális programozást használó, újabb megoldás. Ciklus helyett beépített műveletek vannak. A groupByDate2() függvény a dátumok évenkénti csoportosítását képes megoldani:

A groupByDate3() függvény a dátumok havonkénti csoportosítására készült. A YearMonth osztály beépített ( java.time csomag). A DateCount saját POJO. Konstruktora 4 paramétert kap: YearMonth key, Long value, DateTimeFormatter format és String groupText, valamint van két hasznos metódusa. Az egyik az örökölt és felüldefiniált toString() a formázott kiíráshoz, a másik pedig a Comparable interfésztől implementált compareTo() a sorrend kialakításához szükséges összehasonlításhoz.

A funkcionális programozáshoz kötődő lambda műveletekről többször is blogoltunk már, így azokat most nem részletezem. Helyette ajánlom a szakmai blog lambda kifejezés címkéjét.

Továbbfejlesztés

Érdemes átgondolni az 1. és 2. megoldás markáns különbözőségeit, illetve egymást kiegészítő gondolatmenetét. Zárjuk két ötlettel a továbbfejlesztésre vonatkozóan:

  • A 2. megoldás két függvénye megoldható egyetlen függvénnyel, amely hasonlóan paraméterezhető, mint az 1. megoldás függvénye. Ezáltal univerzális(abb)nak tekinthető megoldás is készülhetne. Aki kellően motivált és végiggyakorolja a fentieket, biztosan meg tudja oldani. Várjuk hozzászólásban, vagy az ILIAS-ban a megoldást!
  • A csoportosítás egyben hierarchiát jelent, amiből fa szerkezet építhető. A fa vizuális komponensen is megjeleníthető, ahogyan blogoltunk is róla: Fát építünk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam, a Java EE szoftverfejlesztő tanfolyam és a Java adatbázis-kezelő tanfolyam szakmai moduljának több alkalmához és az orientáló moduljának 1-4. óra: Programozási tételek alkalmához is kötődik. A Stream API-val és a lambda kifejezésekkel sokszor foglalkozunk.

Szívgörbe ábrázolása

Szívgörbét ábrázolunk Java programmal. A Valentin-nap inspirálta ezt a feladatot. Számos matematikai görbe ismert, amelyek szívformához (kardioid) hasonlítanak. Szükséges egy megfelelő paraméteres görbe. A függvény szív formájú ábrája/grafikonja és egyenletrendszere alapján is nagy a választék.

Ábrázoljuk ezt a paraméteres szívgörbét Java swing GUI felületen!

A szívgörbe ábrázolásához felhasználom az StdDraw osztályt, amely ennek a tankönyvnek a példatárából származik: Robert Sedgewick, Kevin Wayne: Computer Science: An Interdisciplinary Approach, 1st edition, Princeton University, Addison-Wesley Professional, 2016, ISBN 978-0134076423. Az osztály metódusaival könnyen beállítható a nézőpont, a vízszintes/függőleges skála, a rajzoláshoz használt toll mérete/színe és a grafikai primitívek közül csak a pont ábrázolása szükséges.

Négy megoldást mutatok. Mindegyik azonos szívgörbét rajzol a fenti egyenletrendszer alapján. Mindegyik metódus átveszi az N paramétert, amely az összetartozó x és y koordinátapárok számát jelenti. Az N db pont meghatározása/kiszámolása szükséges a szívgörbe ábrázolásához. A szívgörbe ábrázolása önálló ablakban – grafikus felhasználói felületen – jelenik meg. A feladat matematikai jellegéből adódik, hogy tipikus a t nevű ciklusváltozó használata. A metódusokat a vezérlés az 512 paraméterrel hívja meg.

1. megoldás

A heartCurveDraw1() metódus a kiszámolt x és y koordinátákat két párhuzamos, double típusú tömb adatszerkezetben tárolja. A két tömbbe összesen 2*N db double típusú szám kerül. Azonos index jelöli az összetartozó koordinátapárokat. Az egymást követő két ciklus közül az első előállítja az adatszerkezetet és a második megjeleníti a pontokat.

2. megoldás

A heartCurveDraw2() metódus a párhuzamos tömbök helyett adatszerkezetként egyetlen tömböt használ. A java.awt.geom csomag Point2D osztályú objektumai kerülnek a tömbbe. Mivel a Point2D absztrakt osztály, így a Double() osztálymetódusával (factory method) példányosítható úgy, hogy a szükséges koordinátapárokat megfelelően tudja tárolni. A tömbbe N db objektum kerül.

3. megoldás

A heartCurveDraw3() metódus nem használ tömb adatszerkezetet. Tehát nem emlékszik az összes pont koordinátájára. Ehelyett a ciklus röptében, egyesével létrehozza a pontobjektumokat és azonnal ki is rajzolja azokat (átmeneti az emlékezet).

4. megoldás

A heartCurveDraw4() metódus Stream API-t és lambda kifejezéseket használ. Az első N természetes számból készül egy sorozat, amihez röptében hozzákötődik a t-edik Point2D típusú objektum. Ezzel létrejön egy folyam adatszerkezet. Tehát van egy pillanat, amíg a program emlékszik az összes folyambeli pontobjektumra. Végül a folyam feldolgozása, bejárása során egyesével megszólítva a folyam objektumait, a pontok kirajzolódnak a vászonra.

A vezérlés

Az eredmény

A szívgörbe önálló – swing, grafikus felhasználói felület, GUI – ablakban így jelenik meg:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat – a matematikai háttértől eltekintve – a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, valamint a 29-36. Grafikus felhasználói felület alkalmaihoz kötődik.

A 2D szívforma egyenletrendszerét erről a weboldalról választottam: Heart Curve – from Wolfram MathWorld. Egy merész továbbfejlesztési ötlet: a haladóknak megtalálható a 3D szívforma ábrázolása is: Heart Surface – from Wolfram MathWorld.

Sándor is blogolt már a Valentin-nap témában: Rómeó és Júlia. Ebből kiderül, hogy vajon ki szereti jobban a másikat: Rómeó vagy Júlia.

Doktoranduszok programoznak – újratöltve

it-tanfolyam.hu doktoranduszok programoznak

it-tanfolyam.hu doktoranduszok programoznakSaját doktorandusz csoporttársaimmal én is többször beszélgettem már arról – ahogyan Sándor is tette 2018-ban –, hogyan tudnák/tudják használni a programozás eszköztárát, módszereit, lehetőségeit saját kutatási munkájukban, beépítve a kutatási folyamat egyes lépéseibe, illetve disszertációjuk elkészítésébe.

A 7 fős csoportban mindenkinek más az alapvégzettsége, így szoftverfejlesztéshez, programozáshoz közös szókincs és terminológia haladó szinten természetesen nincs, viszont közös bennünk, hogy mindannyian alkotunk különféle modelleket és elemzünk adatokat. A csoport teljesen inhomogén, több szempontból is: ki melyik évfolyamot végzi, hol tart a kutatómunkájában, vannak-e ipari kapcsolatai, nappali vagy levelező képzésben végzi tanulmányait és persze ki mikor ér rá.

Különféle modelleket alkotunk

  • a mérnökök, fizikusok, geográfusok, biológusok többféle kísérletet végeznek el, szimulációkat terveznek és futtatnak, mérőeszközöket és műszereket használnak,
  • az informatikusok különböző matematikai eszközöket alkalmazva objektumorientált – vagy másféle – modellezést végeznek, szoftvereket terveznek, javítanak, újraírnak.

Adatokat is elemzünk, ki-ki előképzettségének megfelelően

  • kérdőívező szoftverekből exportálva valamit,
  • Excel munkalapokon, függvényekkel, adatbázis-kezelő funkciókkal, kimutatásokkal (Pivot táblák),
  • különböző fájlformátumokkal (CSV, XML, JSON, egyedi) dolgozunk és konvertálunk A-ból B-be,
  • távoli adatbázisokhoz, felhőbeli adattárházakhoz csatlakozunk, lekérdezünk és kapunk valamilyen – többnyire szabványos – adathalmazt,
  • matematikai, statisztikai szoftvereket használunk, például: MATLAB, Derive, Maple, SPSS.

Az öt évvel ezelőtti tematikát újragondoltuk. Kérdőívben felmértük a csoporttársak koncepcionális és konkrét igényeit. Más doktori iskolák hallgatói közül is toboroztunk. Ehhez kötődően köszönjük a DOSZ segítségét. Ezek alapján összeállítottunk egy olyan 3 részből álló tematikát, ami mindannyiunk számára hasznos. A 72 óra három 24 órás modulból áll: Java programozás, MATLAB programrendszer, mesterséges intelligencia.

Java programozás modul

  • 1-6. óra: Objektumorientált modellezés, MVC rétegek, algoritmus- és eseményvezérelt programozás
  • 7-12. óra: Fájlkezelés és szövegfeldolgozás (XLS, CSV, XML, JSON formátumú adatok írása, olvasása, feldolgozása), helyi és távoli adatforrásból
  • 13-18. óra: Adatbázis-kezelés JDBC alapon (SQL parancsok, CRUD műveletek, hierarchikus lekérdezések), helyi és távoli adatforrásból, natív módon és készen kapott API-kkal
  • 19-24. óra: Komplex adatfeldolgozási feladatok megoldása programozási tételek használatával, egyszerű statisztikai funkciók implementálásával

MATLAB programrendszer modul

  • 1-6. óra: Bevezetés az MATLAB nyelvbe (R2012 vs. R2022), utasításkészlet, vektorok, mátrixok, szkriptek, függvények, grafika
  • 7-12. óra: Szimulációk tervezése és készítése, numerikus módszerek áttekintése, algoritmizálása, tesztelés, analitikus megoldás, egyenletek megoldása
  • 13-18. óra: Adatok importálása helyi és távoli adatforrásból is, fájlkezelés: szövegfájlok, Excel-fájlok, import, feldolgozás, export, statisztikai alapok
  • 19-24. óra: Statisztikai próbák (illeszkedés- és függetlenség vizsgálata), hisztogramok készítése, differenciálegyenletek megoldása

Mesterséges intelligencia modul

  • 1-6. óra: Klasszikus és újabb megközelítések, alap AI funkcionalitás, megerősítéses és gépi tanulás lehetőségei és korlátai, OpenAI GPT nyelvi modell
  • 7-12. óra: Általános csevegés lehetőségei, korlátai, hasznos tanácsok; csevegés fájlok (szöveg, multimédia) tartalmáról; generatív AI funkciói; kép, ábra, grafikon, térkép, hang, animáció, videó generálása és ezek tömeges feldolgozása; programozási tételek alkalmazása multimédia analitikával együtt
  • 13-18. óra: Statisztikai adatok elemzése AI eszközökkel, automatikus tételbizonyítás AI eszközökkel, gráfelméleti kérdések kontra AI, hatékonysághoz kötődő kérdések AI eszközök esetén
  • 19-24. óra: Objektum- és aspektusorientált tervezés AI eszközökkel, kutatómunkát támogató AI eszközök

Mivel mindenki doktorandusz a csoportban, így a különböző MSc-s alapvégzettsége ellenére mindannyiunknak vannak strukturális programozáshoz kötődő alapismeretei, valamint adatok elemzéséhez szükséges elméleti matematikai/statisztikai alapjai.

A csoport órái szeptembertől decemberig, szombatonként zajlottak. Sándor tartotta a 24 órás Java programozás modult. Ez nagyban lefedi a Java SE szoftverfejlesztő tanfolyamunk tematikáját és kapcsolódik a Java EE szoftverfejlesztő tanfolyamunk és a Java adatbázis-kezelő tanfolyamunk tematikájához is. Én tartottam a 24 órás MATLAB programrendszer modult. Ketten közösen tartottuk a 24 órás Mesterséges intelligencia modult. Igazán tartalmas őszi időszakot jelentett számunkra ez a 12 szombat. Mindenki elvitte, amit beletett.

A koncepciót once-in-a-lifetime jelleggel dolgoztuk ki 🙂 (újratöltve) azzal a fő szándékkal, hogy hatékonyabban működjünk együtt a jövőben. A visszajelzések alapján bátran állíthatom, hogy ez gördülékenyen fog menni. Egyben köszönöm mindenkinek az aktív, konstruktív részvételt.

Kölcsönös ajándékozás véletlenszerűen

A kölcsönös ajándékozás időről-időre több közösségben is felmerül. Munkahelyi környezetben és iskolai csoportokban is (például: Télapó, karácsony). Hagyományos megközelítésben így hangzik a szabály: „húzzunk neveket a kalapból”. Másképpen: mindenki 1 ajándékot ad, mindenki 1 ajándékot kap és a sorsolás véletlenszerűen történik.

Készítsünk Java programot, ami megoldja a kölcsönös ajándékozást véletlenszerűen!

A neveket tároljuk el szövegfájlban ( nevsor10.txt). Soronként egy nevet. Ha különböznek, akkor elegendő a keresztnév. A soroknak/neveknek különbözniük kell. Ha szükséges, akkor hozzáírjuk a vezetéknevet, a vezetéknév első betűjét vagy sorszámot. Ezt a program beolvassa és megjegyzi egy szöveg típusú generikus nevsorLista nevű indexelhető adatszerkezetben. A nevek eredeti sorrendje nem befolyásolja a kiválasztást, mert a neveket a program összekeveri (helyben, véletlenszerűen, a shuffle() metódussal). Adott elemszámú lista indexelhető nullától elemszám-1-ig ( size()-1-ig).

A szövegfájl olvasása, tartalmának betöltése során – az ékezetes karakterek miatt – előfordulhatnak karakterkódolási problémák. Ekkor használható a readAllLines() függvény túlterhelt változata esetén a Charset típusú második paraméter, például így: Charset.forName("ISO-8859-2"). A fájlkezeléshez kötelezően kivételkezelés is szükséges (ezt most nem részletezem).

1. megoldás

Az ajándékot adó-kapó párosokat a listában egymás mellett lévő i-edik (bal) és i+1-edik (jobb) nevek adják. Az adó az elsőtől az utolsó előttiig, a kapó a másodiktól az utolsóig léptethető. Kimarad az a pár, amikor az utolsó ad és az első kap. A lista indexei szerint az adók esetében a nulladik elemétől az utolsó előtti eleméig és a kapók esetében a lista első elemétől az utolsó eleméig jelenti a kiválasztást. Mindez könnyen megoldható for számláló ciklussal. A kimaradó pár ajándékot adó tagja a lista size()-1-edik eleme és kapó tagja a lista nulladik eleme. Ez a ciklus után egyszerű kiírással megoldható.

2. megoldás

A program átmenetileg megváltoztatja a listát: az utolsó elem után bővül az első elemmel ( nevsorLista.add(nevsorLista.get(0))). Ennek köszönhetően az ajándékot adó-kapó párosokat a listában egymás mellett lévő lévő i-edik (bal) és i+1-edik nevek adják. Most nem lesz kimaradó pár, mert a korábbi utolsó elem most az utolsó előtti elem és az utolsó elem most az első. Másképpen: mindenki ad és mindenki kap.

A megoldás Stream API-t használ. Először előállít egy olyan IntStream típusú folyamot, amiben az ajándékot adó és kapó párosok adó (bal) tagjainak sorszámát/indexét tartalmazza. Ezután ezt végigjárva összefűzi a szövegeket ( mapToObj()) úgy, hogy a páros kapó (jobb) tagja az adó tag rákövetkezője. Végül a program kiírja a összefűzött szövegeket ( forEach()) a konzolra. Ha a neveket tartalmazó listát használnánk később még valamire (azaz kellene az eredeti összekevert állapota), akkor érdemes aktiválni a megjegyzésbe tett utolsó utasítást.

Eredmény

A program konzolos/szöveges eredménye mindkét esetben azonos. Persze a nevek sorrendje különbözhet, hiszen az összekeverés minden futtatás esetén másképpen alakul(hat), mert véletlenszerű. Például:

Érdemes tesztelni és átgondolni, hogy mi történne, ha üres a fájl, üres a generikus lista, 1 név van, 2 név van, illetve nem szabadna ilyet, de mi történne azonos nevek esetén. Vajon különbözik/különbözne a fenti két megoldás eredménye? Miért?

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra Objektumorientált programozás és 37-44. óra: Fájlkezelés alkalmaihoz kötődik.