Kockadobás kliens-szerver alkalmazás

Fejlesszünk elosztott, hálózatos, datagram alapú üzenetküldéssel megvalósított Java alkalmazást!

A kockadobás kliens egyszerre két szabályos dobókockával dob, amit ezerszer megismétel és a dobott számok összegét datagram típusú üzenetküldéssel folyamatosan elküldi a szervernek. A szerver localhost-on fut és egy megadott porton keresztül várja a klienstől. A szerver és a kliens egyaránt szálkezelést alkalmazó konzolos alkalmazás.

A projektben van egy swing GUI-s alkalmazás, amely JFreeChart oszlopdiagramon – folyamatosan frissítve – megjeleníti az összesített adatokat, mindez a szerver üzenetküldésével irányítva (amint beérkezik egy dobott (2-12-ig) összeg).

A kommunikációnak – a lehetőségekhez képes – biztonságosnak és – a hálózati adatforgalmat tekintve – takarékosnak kell lennie! Ennek részeként szükséges egy azonosító és egy egyszerű szabály (protokoll).

Tekintsük át mondatszerűen a szálkezelést használó kliens és szerver kommunikációhoz kötődő feladatait:

Ezek működését összefogja egy központi vezérlőosztály és ez a fejlesztőeszköz projektablakában így jelenik meg (egyetlen MVC Java projektként):

A program két felületen kommunikál. A háttérben konzolosan logol a kliens, és a háttérben futó szerver időnként frissítteti a grafikus felhasználói felületen (GUI, ablak) megjelenő grafikont:

Kockadobás - Java kliens-szerver alkalmazás működésa

Aki kedvet kapott: bátran készítse el a fenti terv/koncepció/specifikáció alapján az MVC Java projektet. Érdemes alaposan tesztelni: külön a szervert, külön a klienst, először indítva az egyiket, majd a másikat, leállítani az egyiket majd fordítva. Átgondoltan indokolni is hasznos, vajon mi, hogyan és miért történik.

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java EE szoftverfejlesztő tanfolyam 1-8. óra: Elosztott alkalmazások, webszolgáltatások, szálkezelés, párhuzamosság alkalmához kapcsolódik. Amikor itt járunk a tananyagban, akkor a GUI felület és a grafikon tervezése, megvalósítása már magabiztosan megy, így elegendő a hálózati kommunikációra helyezni a fókuszt.

Egy matematika érettségi feladat megoldása programozással 2024

érettségi logó

érettségi logóA 2024-es középszintű matematika érettségi feladatsorból az 12. feladata inspirált arra, hogy elkészítsem a grafikus ábrázolását Java nyelven. A korábbi Kígyókocka grafikus felületen esettanulmány kiváló alapot, „keretrendszert” adott a továbbfejlesztésre. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor letölthető az oktatas.hu-ról.

12. feladat

Egy piros, egy fekete és egy fehér szabályos dobókockával egyszerre dobunk. Határozza meg annak a valószínűségét, hogy a dobás eredménye három különböző szám lesz! Megoldását részletezze!

1. megoldás

A kedvező /összes eset száma ad választ a kérdésre. Az egymásba ágyazott ciklusok – i-j-k számhármasokként – előállítják az összes esetet. Ezek száma 216, rendre: 1-1-1, 1-1-2, …, 1-1-6, 1-2-1, …, 6-6-5, 6-6-6-ig. A összes eset között megtalálhatók a kedvező esetek. Ezek száma 120, rendre: 1-2-3, 1-2-4, 1-2-5, 1-2-6, 1-3-2, 1-3-4, 1-3-5, 1-3-6, 1-4-2, 1-4-3, 1-4-5, 1-4-6, 1-5-2, 1-5-3, 1-5-4, 1-5-6, 1-6-2, 1-6-3, 1-6-4, 1-6-5, 2-1-3, 2-1-4, 2-1-5, 2-1-6, 2-3-1, 2-3-4, 2-3-5, 2-3-6, 2-4-1, 2-4-3, 2-4-5, 2-4-6, 2-5-1, 2-5-3, 2-5-4, 2-5-6, 2-6-1, 2-6-3, 2-6-4, 2-6-5, 3-1-2, 3-1-4, 3-1-5, 3-1-6, 3-2-1, 3-2-4, 3-2-5, 3-2-6, 3-4-1, 3-4-2, 3-4-5, 3-4-6, 3-5-1, 3-5-2, 3-5-4, 3-5-6, 3-6-1, 3-6-2, 3-6-4, 3-6-5, 4-1-2, 4-1-3, 4-1-5, 4-1-6, 4-2-1, 4-2-3, 4-2-5, 4-2-6, 4-3-1, 4-3-2, 4-3-5, 4-3-6, 4-5-1, 4-5-2, 4-5-3, 4-5-6, 4-6-1, 4-6-2, 4-6-3, 4-6-5, 5-1-2, 5-1-3, 5-1-4, 5-1-6, 5-2-1, 5-2-3, 5-2-4, 5-2-6, 5-3-1, 5-3-2, 5-3-4, 5-3-6, 5-4-1, 5-4-2, 5-4-3, 5-4-6, 5-6-1, 5-6-2, 5-6-3, 5-6-4, 6-1-2, 6-1-3, 6-1-4, 6-1-5, 6-2-1, 6-2-3, 6-2-4, 6-2-5, 6-3-1, 6-3-2, 6-3-4, 6-3-5, 6-4-1, 6-4-2, 6-4-3, 6-4-5, 6-5-1, 6-5-2, 6-5-3, 6-5-4.

A megszámolás programozási tétel előállítja a szükséges változókat, amik hányadosa megadja a szükséges p valószínűséget és ezt a program ki is írja a konzolra: A keresett valószínűség: 0.5555555555555556. Az esetek/lehetőségek felsorolása egyben a megoldás részletezése. A megszámoláshoz használt sokféle feltétel természetesen átfogalmazható lenne. Az egyszerűsítés többféleképpen is elvégezhető, többek között a De Morgan-azonosságok alkalmazásával.

2. megoldás

A korábbi JavaFX alapon megvalósított program módosításával könnyen állítható a megoldás grafikus/vizuális reprezentációja. Íme egy képernyőkép az elkészült program felhasználói felületéről:

A 3 db dobókockával kapott számhármasok 3D-ben, térbeli pontként jelennek meg egy kockában. A nagy piros gömbök jelölik azt a 6 db esetet, amikor mindhárom kockadobás megegyezik. Ezek a kocka egyik testálójában találhatók. A közepes narancssárga gömbök jelölik azt a 90 db lehetőséget, amikor bármely (pontosan) két kockadobás megegyezik. Végül a kis szürke gömbök jelölik a megoldást. Ez a 120 db kimaradó eset, másképpen: amikor mindhárom kockadobás különbözik. Másféle lehetőség nincs és megvan a 216 esethez tartozó összes gömb.

A megoldás implementálása a korábbi programban szinte csak egy metódus frissítését, kiegészítését igényelte. Ez a korábbi tudatos, objektumorientált, MVC szerkezetnek köszönhető és egyben a forráskód újrafelhasználása is. A createCube() metódus az alábbiak valósítja meg a feladatot:

A belépési pont, a grafikus felület építése, a nyomógombok eseménykezelése, a geometriai transzformációk, és persze a 3D -> 2D leképezés a megjelenítés során megmaradt. A virtuális térben elhelyezett objektumok változtak (pozíció, nézőpont, anyagtulajdonság). További részletes magyarázat érhető el a Kígyókocka grafikus felületen esettanulmányban.

3. megoldás

Itt most csak ötletet szeretnék mutatni. A 2022-es 6. feladat 3-7. kombinatorikai megoldásai könnyen továbbfejleszthetők és sokféle hasznos apróság gyakorolható.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 9-12. óra: Metódusok, rekurzió, valamint 17-28. óra: Objektumorientált programozás alkalmaihoz kötődik.

Egy matematika érettségi feladat megoldása programozással 2017

érettségi logó

érettségi logóA 2017-es középszintű matematika érettségi feladatsor 12. feladata inspirált egy Java program megírására. Szükséges hozzá néhány programozási tétel: sorozatszámítás, megszámolás, valamint adatszerkezetként ideális egy kétdimenziós tömb. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

Egy kockával kétszer egymás után dobunk. Adja meg annak a valószínűségét, hogy a két dobott szám összege 7 lesz! Válaszát indokolja!

Matematikai megoldás

A feladat nagyon egyszerű. Két megoldást ismertet a javítási-értékelési útmutató:

  • Összesen 6 * 6 = 36-féleképpen dobhatunk. Hat olyan dobáspár van, amelyben 7 az összeg: (1; 6), (2; 5), (3; 4), (4; 3), (5; 2) és (6; 1). A keresett valószínűség 6/36-od, vagyis egyhatod.
  • Bármennyit is dobunk elsőre, ezt a második dobás egyféleképpen egészítheti ki 7-re. Így a második dobásnál a hat lehetséges értékből egy lesz számunkra kedvező. A keresett valószínűség egyhatod.

Közelítő megoldások szimulációval

Egy alkalom két kockadobást jelent egymás után. A dobások sorrendje nem számít (alkalmanként és összességében sem). Minél több alkalommal végezzük el a kockadobásokat, annál jobban megközelítjük a fenti valószínűséget (várható értéket, bővebben: nagy számok törvénye). Az egyhatod közelítő értéke a Java double adattípusával 0.16666666666666666.

1. megoldás

Ha nem akarunk emlékezni a dobásokra, összegükre, csupán megszámolnánk, hogy hány olyan dobáspár van, amelyben 7 az összeg, akkor ehhez mindössze egy számláló ciklus kell, aminek a ciklusmagjában két véletlen kockadobás összegét előállítjuk és növelünk egy számlálót/gyűjtőt, ha az éppen 7. Az eredményt a számláló és a ciklus lépésszámának hányadosa adja meg. Például meghívhatjuk a metódust így: kockadobas1(5000); és kaphatjuk eredményül ezt: 5000 alkalomból 7 összegként 836 alkalommal fordult elő. Valószínűség: 0.1672 . A metódus kivételt dob, ha értelmetlen a paramétere. Íme a metódus Java forráskódja:

2. megoldás

Ha egy 13 elemű egész típusú tömböt használhatunk emlékezetként. Kezdetben 2-től 12-ig indexelve nullázzuk ki, így csoportos gyűjtést tudunk megvalósítani. A nullázás most inicializáló blokkal történt, mert nem sok eleme van a tömbnek (sok elemnél inkább használjunk erre ciklust). A tömb első két elemét nem használjuk semmire. Mi történik a ciklusban? Például dobas1=3 és dobas2=4 esetén a dobasDbTomb[7] elemét növeli (mindegy mi volt ott korábban, de inkrementálódjon). Most több adatot tárolunk, mint amiből megválaszolható a feladatban megfogalmazott konkrét kérdés, de ezt tekinthetjük strukturális tartaléknak.

Hasonló, egydimenziós tömbbel történő belső adattárolást megvalósító elosztott alkalmazásról blogoltunk már: Kockadobás kliens-szerver alkalmazás.

3. megoldás

Ez az igazi szimuláció, swing GUI grafikus környezetben, ahogyan az alábbi képernyőképen látható. A megvalósítás kétdimenziós tömböt használ adatszerkezetként. Álljon 7 sorból és 7 oszlopból és legyen i a sor- és j az oszlopindex. A tömb [0][0]-dik elemét nem használjuk semmire. Az első oszlopába ( j=0 és i>0) bekerülhetnek a dobókockán előforduló számok 1-től 6-ig. Hasonlóan az első sorba ( i=0 és j>0) is. Ezek a dobott számok alapján indexek lesznek és az ábrán zöld hátterű cellákba kerültek. A tömb többi eleme kezdetben 0 (nulla), ezek az ábrán fehér hátterű cellák. A szürke hátterű cellák (mellékátló) esetén a dobott számok összege 7 és jól látszik, hogy ez hatféleképpen fordulhat elő a 36-féle eset közül. Például a 2. sor 5. oszlopában lévő szám mutatja, hogy a 10000 alkalomból 274-szer fordult elő az, hogy a dobáspár a (2; 5) lett. A tömb két indexe felcserélhető lenne, mert ez a mellékátlóban lévő számok összegét nem befolyásolja.

Kockadobás program képernyőkép

A programban kiválasztható néhány alkalomból amit szeretnénk, és a Dob nyomógombra kattintva indul el időzítővel a folyamat. Várakoztatás/menet közben piros színnel kiemelve látszik/megfigyelhető, hogy az éppen aktuális dobás hol növeli az értéket/előfordulást/darabszámot. A képernyőképen befejeződött állapot látható. Az eredményt a szürke cellákban lévő számok összegének és az alkalmak számának hányadosa adja meg. Ezt a háttérbeli kétdimenziós tömbben összesítéssel az alábbi Java forráskód-részlet adja meg:

Most lényegesen több adatot tárolunk, mint ami a konkrét válaszhoz kell, de cserébe jól érzékeltethető a csoportos gyűjtés/megszámolás működése. A program grafikus felhasználói felületének felépítését és az eseménykezelés megvalósítását most nem részletezzük.

Eszünkbe juthatna, hogy a program miért dob kétszer 1 és 6 közötti számot egymás után és ezt összegzi, amikor egyetlen 2 és 12 közötti dobással (véletlenszám generálással) megkaphatnánk a dobáspár összegét. Hiszen két db 1 és 6 közötti szám összege mindig 2 és 12 közötti szám. Jó lenne ez az ötlet/megvalósítás? Igen? Nem? Miért? A hozzászólásokhoz várjuk az indoklást.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra: Objektumorientált programozás alkalmaira épülő 29-36. óra: Grafikus felhasználói felület alkalmaihoz kötődik.