Rómeó és Júlia

Vajon hogyan kerül elő a Rómeó és Júlia az it-tanfolyam.hu szakmai blogban témaként? Hiszen mégiscsak egy Shakespeare színműről/tragédiáról van szó. Vajon mit programozhatunk Java nyelven ehhez kötődően épp Valentin-napon? Mindjárt kiderül.

Tegyünk fel egy kérdést és próbáljunk rá válaszolni! Vajon ki szereti jobban a másikat? Rómeó vagy Júlia?

Induljunk el az adatforrásból, amihez alkalmazkodnunk kell. A színmű angol nyelven publikusan elérhető XML formátumban: The Tragedy of Romeo and Juliet. Az XML fájlok könnyen feldolgozhatók Java nyelven. Részletek a fájlból (görgethető):

Az XML fájl felépítését tanulmányozva (1-5 alapján) megállapíthatóak az alábbiak:

  • A színmű öt felvonásból áll, ezeket <ACT></ACT> csomópontok jelölik.
  • Egy „adagnyi” beszédet a <SPEECH></SPEECH> csomópont fog össze.
  • A csomópontban található, hogy ki beszél: ez a <SPEAKER></SPEAKER> elem. A mesélő, kar esetén ez az elem üres, és a null-t nem szabad feldolgozni.
  • A csomópontban találhatók a szabadvers kimondott sorai: ezek a <LINE></LINE> elemek. Legalább egy sor minden beszédben van, és nem tudjuk előre a számukat.
  • Nem következetes helyen a DOM-ban, többféleképpen beágyazva és önállóan is előfordulhatnak <STAGEDIR></STAGEDIR> elemek. Ezek a színmű Kosztolányi-féle magyar fordításában dőlt betűvel megjelenő – cselekvésre utaló – színpadi utasítások. Van köztük csók is, amit az XML-ből nem szabad feldolgozni, bár erősen ráutaló magatartás. 🙂
  • Nem tudjuk előre, hogy hány csomópont található a fájlban.

A Java program készítése, tesztelése közben – mintegy mellékesen – megtudhatjuk, hogy Rómeó 612 sorban 24075 betűnyi, Júlia 544 sorban 21855 betűnyi szöveget mond. Persze nem mindet egymásnak mondják. Eközben vajon hányszor mondják ki a szeret, szeretem, szeretlek szavakat? A ragoktól, toldalékoktól, kis- és nagybetűket nem megkülönböztetve és attól is eltekintve, hogy éppen kinek/kiknek mondják amit éppen mondanak, egy becsléshez elegendő, ha a love szóra fókuszálunk (számíthatna a loving alak is).

Az alábbi Java forráskód betölti az XML fájlt a memóriába. Ezután kiválogatja a beszédeket. Ha a beszélő élő ember (szereplő), akkor érdekes, hogy mit/miket mond. Ha ROMEO vagy JULIET mondja az adott sort, akkor azt a program kiválogatja két generikus listába ( romeoLineList és julietLineList) beszédnyi adagokban. Ez nem szétválogatás programozási tétel, mert nem minden beszéd minden sora kerül valahová. A kivételkezelés nem kidolgozott.

Könnyen megkaphatjuk, hogy Rómeó hány darab olyan sort mond, amely tartalmazza a love szót. Például ennek a lambda kifejezésnek kiíratva az eredményét a konzolra:

Könnyen megkaphatjuk Rómeótól a 53 sornyi szöveget is így:

Íme Rómeó kiválogatott sorai (az 5. sorban kétszer is előfordul a love, de ez most nem számít):

Hasonlóan megkaphatjuk Júlia 38 kiválogatott sorát is:

Próbáljunk válaszolni a fentiek alapján a feltett kérdésre! Következtethetünk arra, hogy Rómeó jobban szereti Júliát. Legalábbis többször említi. 53>38. Persze tudjuk, hogy mindez nem ilyen egyszerű. 🙂

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, 25-28. óra: Objektumorientált programozás 3. rész, valamint a Java EE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: XML feldolgozás alkalmaihoz kötődik.

Nagyon különböző megoldásokat készíthetünk és szerteágazóan gyakorolhatunk, ha:

  • az XML fájlt kézzel mentjük a webről és utána a helyi fájlrendszerből dolgozzuk fel,
  • az XML fájlt közvetlenül a webről, dinamikusan olvassuk,
  • csak beépített XML-feldolgozást használunk,
  • külső XML API-t használunk,
  • DOM, SAX, XSL, van-e DTD,
  • XPath kifejezésekkel adunk választ a kérdésre,
  • a fenti didaktikusan egyszerű megoldás helyett haladóbb eszközöket (például: Stream API-t) használunk.

Egy matematika érettségi feladat megoldása programozással 2020

érettségi logó

érettségi logóA 2020-as emelt szintű matematika érettségi feladatsor 9. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá kollekció adatszerkezet és néhány programozási tétel. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

2018-ban és 2019-ben is kiválasztottam egy-egy matematika érettségi feladatot a középszintű feladatlapról és megoldottam Java nyelven. 2020-ban az emelt szintű feladatsornál lelkesedtem eléggé, hogy blogoljak róla.

9. feladat

Egy városban a közösségi közlekedést kizárólag vonaljeggyel lehet igénybe venni, minden utazáshoz egy vonaljegyet kell váltani. A vonaljegy ára jelenleg 300 tallér. Az utazások száma naponta átlagosan 100 ezer. Ismert az is, hogy ennek kb. 10%-ában nem váltanak jegyet (bliccelnek).
A városi közlekedési társaság vezetői hatástanulmányt készíttettek a vonaljegy árának esetleges megváltoztatásáról. A vonaljegy árát 5 talléronként lehet emelni vagy csökkenteni. A hatástanulmány szerint a vonaljegy árának 5 talléros emelése várhatóan 1000-rel csökkenti a napi utazások számát, és 1 százalékponttal növeli a jegy nélküli utazások (bliccelések) arányát. (Tehát például 310 talléros jegyár esetén naponta 98000 utazás lenne, és ennek 12%-a lenne bliccelés.) Ugyanez fordítva is igaz: a vonaljegy árának minden 5 talléros csökkentése 1000-rel növelné a napi utazások számát, és 1 százalékponttal csökkentené a bliccelések arányát. A tanulmány az alkalmazott modellben csak a 245 tallérnál drágább, de 455 tallérnál olcsóbb lehetséges jegyárakat vizsgálta.

  • a) Mekkora lenne a közlekedési társaság vonaljegyekből származó napi bevétele a hatástanulmány becslései alapján, ha 350 tallérra emelnék a vonaljegyek árát?
  • b) Hány talléros vonaljegy esetén lenne maximális a napi bevétel?

Tervezés

Értelmezve a feladatot és a feltett kérdéseket: adódik, hogy a megoldáshoz szükséges egy POJO, ami az összetartozó adatokat fogja egybe objektumként. Mivel több kell belőle, célszerű egy indexelhető adatszerkezet, például tömb vagy lista. Ékezettelen magyar elnevezéseket fogok használni. A POJO osztály neve legyen Kozlekedes és a beszédes nevű tulajdonságai legyenek a következők: vonaljegyAr, napiUtasszam, bliccelesSzazalek, napiBevetel. Mindegyik nemnegatív egész szám és belefér az int primitív típus számábrázolási tartományába.

Ha a konstruktor paraméterként átveszi az input vonaljegyAr-at, akkor abból a többi adatot egyszerű képletekkel előállíthatja. Hasznos, ha a konstruktor ellenőrzést is végez. A tanulmány az alkalmazott modellben limitálja a vonaljegy árát (250 és 450 közötti öttel osztható számként). Az öttel oszthatóság az emelés/árváltozás mértékéből adódik. Ha a vonaljegy ára nem megfelelő, akkor a konstruktor kivételt dob, amivel megakadályozza, hogy az alkalmazott modellhez nem illeszkedő tulajdonságokkal rendelkező objektum létrejöjjön.

Az output meghatározásához az a) és b) feladatban megfogalmazott kérdésekből kell kiindulni. Ezekből adódik, hogy szükséges két getter metódus a POJO-ba:  getVonaljegyAr() és getNapiBevetel(). Persze könnyen generáltatható az összes getter is, de setter nem kell. Ezeken kívül a tesztelés megkönnyítésére hasznos egy toString() metódus is, amellyel a 4 összetartozó adat hozzáférhető és megjeleníthető a konzolon.

A belépési pont és egyben a vezérlés egy másik osztályban valósul meg. Itt feltöltjük a tanulmány alkalmazott modelljének megfelelően előállított objektumokkal (memóriacímeikkel) a generikus listát, amit programozási tételekkel (kiválasztás, szélsőérték-kiválasztás) dolgozunk fel.

A POJO osztály forráskódja

A vezérlő osztály forráskódja

A main() metódus feltölti a generikus lista adatszerkezetet az alkalmazott modellben lehetséges/előforduló vonaljegyAr alapján létrehozott objektumokkal (a memóriacímükkel). A feladat9Megoldas1() metódus paraméterként átveszi a feldolgozandó listát.

Az a) feladatra a választ kiválasztás programozási tétellel kapjuk meg. A kérdés így szól: melyik az (első) olyan objektum, amelyben a vonaljegyAr egyenlő 350-nel? A ciklust követően megkapjuk, hogy az i-edik az, amelyikre igaz a feltétel. (Az nem merül fel, hogy van-e ilyen objektum, hiszen tudjuk, hogy van. Csak az a kérdés, hogy melyik az. Több sem lehet.) A  lista.get(i).getNapiBevetel() művelettel elkérjük az i-edik objektumtól a válaszadáshoz szükséges napi bevételt.

A b) feladatra a választ szélsőérték-kiválasztás programozási tétellel kapjuk meg. A kérdés így szól: melyik az (első) olyan objektum, amelyben a napiBevetel a maximális? (Mivel a lista nem üres, így létezik a legnagyobb napi bevétel. Mivel nem biztos, hogy a legnagyobb napi bevétel egyedi, ezért merül fel az első a kérdésben.) Tegyük fel, hogy a nulladik objektumra igaz a feltétel: azaz maxIndex=0. Később a ciklusban változtassuk meg a maxIndex-et, ha a feldolgozás során találunk nagyobb értéket. Szélsőérték-kiválasztásnál a kezdeti elemet nem hasonlítjuk össze saját magával (hiszen úgysem különbözne), ezért indul a for ciklus 1-ről. A ciklust követően a  lista.get(maxIndex).getVonaljegyAr() művelettel elkérhetjük a maxIndex-edik objektumtól a válaszadáshoz szükséges vonaljegy árát.

A program által felépített adatszerkezet

Ha a vezérlőben aktiváljuk a megjegyzésben szereplő kiíratást, akkor a konzolon megjelennek a main() metódusban létrehozott listában lévő objektumok adatai (amilyen viselkedést a POJO toString()-jébe programoztunk. A 246 soros szöveg görgetéssel megtekinthető.

Az eredmény

A program konzolon/szövegesen jeleníti meg a válaszokat a feltett két kérdésre:

Gondoljuk újra

Az első megoldás 41 elemű listát épít. Persze ez a lista több mindenre is jó lehet, ha több(féle) kérdést kell(ene) megválaszolni. Ezért tekinthetjük strukturális tartaléknak.

A két konkrét kérdésre azonban úgy is adhatunk választ, hogy nem építünk lista adatszerkezetet. Ez a második megoldás. A feladat9Megoldas2() metódusnak nincs paramétere és azonos eredmény ad.

Az a) feladat: egy névtelen objektumként létrehozott POJO-tól azonnal elkérhetjük a választ, ami mehet rögtön a konzolra. Ez a kiválasztás programozási tétel extrém/legjobb esete, hiszen az első objektum jó is lesz, ciklust sem kell szervezni.

A b) feladat: kiindulunk a legolcsóbb vonaljegyből és tegyük fel, hogy ekkor a legnagyobb a napi bevétel. Ciklussal léptessük a vonaljegy árát ötösével legfeljebb a legdrágábbig. Léptetés közben mindig csak azt a dinamikusan létrehozott objektumot „jegyezzük meg”, amelyiktől a röptében elkért napi bevétel a korábbihoz – az addig legnagyobbnak vélthez – képest nagyobb. Végül a megmaradó POJO-tól elkérhető a maximális napi bevételhez tartozó vonaljegy ára. Ez a szélsőérték-kiválasztás programozási tétel megvalósítása dinamikusan: kezdetben nem áll rendelkezésre az összes adat, ami alapján döntést kell hozni, ehelyett az adatokat menet/feldolgozás közben állítjuk elő és „eldobjuk” azt, ami már nem kell.

Nekem ezek a programozással való megoldások sokkal jobban tetszenek, mint az oktatas.hu-n elérhető hivatalos, matematikai megoldás, amihez differenciálszámítás is kell. Persze aki emelt szinten érettségizik matematikából, annak az sem jelenthet gondot és biztosan izgalmasnak találja.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 9-12. óra: Metódusok, rekurzió, valamint 17-24. óra: Objektumorientált programozás alkalmaihoz kötődik.

Hány éves a kapitány?

Hány éves a kapitány?

Hány éves a kapitány?A problémamegoldó, logikus gondolkodásra nevelő képzések anyagában, illetve felvételi feladatsorokban is sokszor megtalálható – többféle változatban is.

Lássunk egyet a népszerű „Hány éves a kapitány?” típusú feladatok közül!

Három elefántot kell berakodnunk – szólt a hajóskapitány az első tiszthez.
És hány évesek ezek az elefántok? – kérdezte az első tiszt.
Mindegyik elmúlt már két éves és életkoraik szorzata 2450 – volt a válasz.
Hát életkoraik összege?
Azt fölösleges elárulnom, mert abból még nem tudnád megállapítani életkorukat – mondta a kapitány, majd hozzátette: Az egyikük idősebb nálam.
Akkor már tudom, hogy hány évesek az elefántok – mondta az első tiszt.

Feltéve, hogy tényleg tudta; … hány éves a kapitány?

Hogyan használhatnánk a feladat megoldásához programozáshoz kötődő ismereteinket?

Állítsunk elő olyan három szorzótényezőt, amelyek szorzata 2450 és egyben írassuk ki az összegüket is a konzolra!

Az i, j, k a három elefánt életkorát jelöli. Mivel mindegyik elmúlt két éves (és feltételezzük, hogy életkoraik egész számmal kifejezhetők), így i=3-ról indul. Az elefántok lehetnek egyidősek, ezért j=i-ről és k=j-ről indul. Nincs kizárt életkor, így a változók léptethetők egyesével. Az i, j, k monoton növekvő sorozatot alkot, ezért a kiírásban nem lesznek olyan sorok, amelyek csupán a szorzótényezők sorrendjében térnek el. Durva felső becslés a 100, hiszen az elefántok általában 60-70 évig élnek. Eredményül ezt kapjuk:

Az eredményből milyen következtetés(eke)t lehet levonni és mi a megoldás?

Az egyszer előforduló összegeket ki kell zárni, mert abból az első tiszt tudná az elefántok életkorát. Többször előforduló összegként marad a 64. Tehát az elefántok lehetnek 5, 10, 49, illetve 7, 7, 50 évesek. Mivel a kapitánynál idősebb az egyik elefánt, így a kapitány nem lehet 48 éves vagy fiatalabb (mert ekkor nem lenne egyértelmű az életkora), illetve nem lehet 50 éves vagy idősebb (mert ekkor nem lenne nála idősebb elefánt). Tehát a kapitány 49 éves.

(Másképpen megközelítve: a 2450 prímtényezős felbontása 2*52*72, amiből ugyanezekre a következtetésekre juthatunk.)

A feladat további változatai

  • Egy hajó hosszának, az árbóc magasságának, a kapitány kisfia életkorának és a kapitány életkorának szorzata 303335. Hány éves a kapitány?
  • A kapitány most kétszer annyi idős, mint a hajója volt akkor, amikor a kapitány kétszer volt annyi idős, mint most a hajója. A kapitány és a hajója összesen 70 éves. Hány éves a kapitány?
  • A Fekete Kalóz néven elhíresült kalózkapitány egyik sikeres kalandja után kiszámíttatta saját maga és kisfia életkorának, valamint hajója hosszának a szorzatát. Az eredmény 26 159 lett, amelyet mint szerencseszámot egy medálra vésetett és mindig a nyakában hordott. Hány éves a kapitány? (A hajóhosszt méterekben mérték, és a mérőszám egész szám!)
  • Te vezeted az utasszállító repülőt. Budapesten felszáll 11 utas. Bécsben leszáll 5 és felszáll 9. Párizsban 1 kivételével mindenki leszáll. Hány éves a kapitány?
  • A kapitány hajója most 40 éves. Kétszer annyi idős, mint amennyi a kapitány volt akkor, amikor a hajó annyi idős volt, mint a kapitány most. Hány éves a kapitány?

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek alkalmához kötődik.

Ajánlott irodalom

Aki kedvet kapott és beszerezne néhány könyvet – tele érdekes, gondolkodtató, kreatív, logikai feladatokkal – ajánlom az alábbiakat:

  • Katona, R. (szerk): Logikai egypercesek – az elme játékai, 2. kiadás, DFT-Hungária Könyvkiadó, Budapest, 2006, ISBN 963 9473 55 3
  • Róka, S.: 2×2 néha 5? – Paradoxonok, hibás bizonyítások, Tóth Könyvkereskedés és Kiadó Kft., Debrecen, 2008, ISBN 963 5965 24 3
  • Károlyi, Zs.: Csak logIQsan!, 2. javított kiadás, Typotex Elektronikus Kiadó Kft., Budapest, 2017, ISBN 963 279 693 5
  • Róka, S.: Egypercesek – Feladatok matematikából 14-18 éveseknek, Tóth Könyvkereskedés Kft., Debrecen, 1997
  • G. Nagy, L.: A világ legújabb logikai rejtvényei, Magyar Könyvklub, H. n., 2001, ISBN 963 547 512 8

Haladóknak ajánlom

  • Smullyan, R.: A hölgy vagy a tigris? – és egyéb logikai feladatok, 2. javított kiadás, Typotex Kiadó Kft., Budapest, 2002, ISBN 963 7546 63 4
  • Smullyan, R.: Mi a címe ennek a könyvnek? – Drakula rejtélye és más logikai feladványok, Typotex Elektronikus Kiadó Kft., Budapest, 1996, ISBN 963 7546 64 2
  • Shasha, D.: Dr. Ecco talányos kalandjai, Typotex Kiadó – SHL Hungary Kft., 2000, ISBN 963 9132 72 1

Nemzetközi Pi nap

Pi logó

Pi logóA Pi-t (π) mindenki ismeri. Talán sokaknak kedvenc története is van a π-vel kapcsolatosan, amelyet iskolában vagy utazásai alatt szerzett. A π Euklidesz geometriájában a kör kerületének és átmérőjének arányát jelöli. A π irracionális szám, azaz végtelen, nem szakaszos tizedestört; másképpen számjegyei között nincs ismétlődés. A π értékével a hétköznapokban 3,14-dal szokás számolni, de a tudomány területén ennél sokkal pontosabb közelítést szokás alkalmazni. A π közelítése az informatikának köszönhetően akár több millió tizedesjegyig is lehetséges (például: S. Memphill: Pi to 1,000,000 places).

A nemzetközi Pi nap alkalmából (március 14) megvalósítottunk néhány – végtelen összeggel és szorzattal – π közelítésre való képletet, algoritmust Java nyelven.

1. Viète-féle sor

Pi-kozelites-Viete

A módszer néhány eredménye: i=5  esetén 3.140331156954752  (2 tizedesjegyre pontos), i=10 -nél 3.1415914215112  (5 tizedesjegyre pontos), i=11  esetén 3.1415923455701176  (6 tizedesjegyre pontos).

2. Leibniz-féle sor

Pi-kozelites-Leibniz

A módszer néhány eredménye: a 24. lépéstől stabil 1 tizedesjegyre, a 626. lépéstől stabil 2. tizedesjegyre, a 2453. lépéstől stabil 3 tizedesjegyre (hiszen alternál).

3. Wallis-formula

Pi-kozelites-Wallis

A módszer néhány eredménye: A 38. lépéstől 1, a 986. lépéstől 2, a 2650. lépéstől 3, a 16954. lépéstől már 4 tizedesjegyre pontos.

4. Csebisev-sor

Pi-kozelites-Csebisev

A módszer k=10 -re már 8 tizedesjegyig pontos.

A bejegyzéshez tartozó teljes forráskódot – további 8 közelítő módszer implementációjával együtt – ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek alkalmához kötődik.

Egy matematika érettségi feladat megoldása programozással 2017

érettségi logó

érettségi logóA 2017-es középszintű matematika érettségi feladatsor 12. feladata inspirált egy Java program megírására. Szükséges hozzá néhány programozási tétel: sorozatszámítás, megszámolás, valamint adatszerkezetként ideális egy kétdimenziós tömb. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

Egy kockával kétszer egymás után dobunk. Adja meg annak a valószínűségét, hogy a két dobott szám összege 7 lesz! Válaszát indokolja!

Matematikai megoldás

A feladat nagyon egyszerű. Két megoldást ismertet a javítási-értékelési útmutató:

  • Összesen 6 * 6 = 36-féleképpen dobhatunk. Hat olyan dobáspár van, amelyben 7 az összeg: (1; 6), (2; 5), (3; 4), (4; 3), (5; 2) és (6; 1). A keresett valószínűség 6/36-od, vagyis egyhatod.
  • Bármennyit is dobunk elsőre, ezt a második dobás egyféleképpen egészítheti ki 7-re. Így a második dobásnál a hat lehetséges értékből egy lesz számunkra kedvező. A keresett valószínűség egyhatod.

Közelítő megoldások szimulációval

Egy alkalom két kockadobást jelent egymás után. A dobások sorrendje nem számít (alkalmanként és összességében sem). Minél több alkalommal végezzük el a kockadobásokat, annál jobban megközelítjük a fenti valószínűséget (várható értéket, bővebben: nagy számok törvénye). Az egyhatod közelítő értéke a Java double adattípusával 0.16666666666666666.

1. megoldás

Ha nem akarunk emlékezni a dobásokra, összegükre, csupán megszámolnánk, hogy hány olyan dobáspár van, amelyben 7 az összeg, akkor ehhez mindössze egy számláló ciklus kell, aminek a ciklusmagjában két véletlen kockadobás összegét előállítjuk és növelünk egy számlálót/gyűjtőt, ha az éppen 7. Az eredményt a számláló és a ciklus lépésszámának hányadosa adja meg. Például meghívhatjuk a metódust így: kockadobas1(5000); és kaphatjuk eredményül ezt: 5000 alkalomból 7 összegként 836 alkalommal fordult elő. Valószínűség: 0.1672 . A metódus kivételt dob, ha értelmetlen a paramétere. Íme a metódus Java forráskódja:

2. megoldás

Ha egy 13 elemű egész típusú tömböt használhatunk emlékezetként. Kezdetben 2-től 12-ig indexelve nullázzuk ki, így csoportos gyűjtést tudunk megvalósítani. A nullázás most inicializáló blokkal történt, mert nem sok eleme van a tömbnek (sok elemnél inkább használjunk erre ciklust). A tömb első két elemét nem használjuk semmire. Mi történik a ciklusban? Például dobas1=3 és dobas2=4 esetén a dobasDbTomb[7] elemét növeli (mindegy mi volt ott korábban, de inkrementálódjon). Most több adatot tárolunk, mint amiből megválaszolható a feladatban megfogalmazott konkrét kérdés, de ezt tekinthetjük strukturális tartaléknak.

Hasonló, egydimenziós tömbbel történő belső adattárolást megvalósító elosztott alkalmazásról blogoltunk már: Kockadobás kliens-szerver alkalmazás.

3. megoldás

Ez az igazi szimuláció, swing GUI grafikus környezetben, ahogyan az alábbi képernyőképen látható. A megvalósítás kétdimenziós tömböt használ adatszerkezetként. Álljon 7 sorból és 7 oszlopból és legyen i a sor- és j az oszlopindex. A tömb [0][0]-dik elemét nem használjuk semmire. Az első oszlopába ( j=0 és i>0) bekerülhetnek a dobókockán előforduló számok 1-től 6-ig. Hasonlóan az első sorba ( i=0 és j>0) is. Ezek a dobott számok alapján indexek lesznek és az ábrán zöld hátterű cellákba kerültek. A tömb többi eleme kezdetben 0 (nulla), ezek az ábrán fehér hátterű cellák. A szürke hátterű cellák (mellékátló) esetén a dobott számok összege 7 és jól látszik, hogy ez hatféleképpen fordulhat elő a 36-féle eset közül. Például a 2. sor 5. oszlopában lévő szám mutatja, hogy a 10000 alkalomból 274-szer fordult elő az, hogy a dobáspár a (2; 5) lett. A tömb két indexe felcserélhető lenne, mert ez a mellékátlóban lévő számok összegét nem befolyásolja.

Kockadobás program képernyőkép

A programban kiválasztható néhány alkalomból amit szeretnénk, és a Dob nyomógombra kattintva indul el időzítővel a folyamat. Várakoztatás/menet közben piros színnel kiemelve látszik/megfigyelhető, hogy az éppen aktuális dobás hol növeli az értéket/előfordulást/darabszámot. A képernyőképen befejeződött állapot látható. Az eredményt a szürke cellákban lévő számok összegének és az alkalmak számának hányadosa adja meg. Ezt a háttérbeli kétdimenziós tömbben összesítéssel az alábbi Java forráskód-részlet adja meg:

Most lényegesen több adatot tárolunk, mint ami a konkrét válaszhoz kell, de cserébe jól érzékeltethető a csoportos gyűjtés/megszámolás működése. A program grafikus felhasználói felületének felépítését és az eseménykezelés megvalósítását most nem részletezzük.

Eszünkbe juthatna, hogy a program miért dob kétszer 1 és 6 közötti számot egymás után és ezt összegzi, amikor egyetlen 2 és 12 közötti dobással (véletlenszám generálással) megkaphatnánk a dobáspár összegét. Hiszen két db 1 és 6 közötti szám összege mindig 2 és 12 közötti szám. Jó lenne ez az ötlet/megvalósítás? Igen? Nem? Miért? A hozzászólásokhoz várjuk az indoklást.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra: Objektumorientált programozás alkalmaira épülő 29-36. óra: Grafikus felhasználói felület alkalmaihoz kötődik.