Híres IT idézetek

hires_idezetek

hires_idezetekHí­res idé­ze­te­ket min­dig ér­de­mes fi­gye­lem­mel kí­sér­ni és hasz­nos né­ha el­gon­dol­kod­ni is eze­ken. Az alábbi­ak­ban prog­ra­mo­zás­hoz, szoft­ver­fej­lesz­tés­hez, illet­ve in­for­ma­ti­ká­hoz kö­tő­dő­en gyűj­töt­tünk össze 12 idé­ze­tet. A hí­res em­be­rek kö­zött van­nak mér­nö­kök, ma­te­ma­ti­ku­sok, ku­ta­tók, akik prog­ra­mo­zá­si nyel­ve­ket al­kot­tak, akik hard­vert ter­vez­tek, cé­get ala­pí­tot­tak, akik in­for­ma­ti­kus­ként dol­goz­tak/dol­goz­nak. További idé­ze­te­ket szí­ve­sen fo­ga­dunk.

 

Télapó probléma

Télapó-probléma

Télapó-problémaAz operációs rendszerek tervezésének fontos része az ütemezési, erőforrás- és szálkezelési feladatok problémamentes, holtpontmentes megoldása, szinkronizálása, amiről sok ismert szerző publikált már, néhányan közülük angol nyelven: W. Stallings, A. B. Downey, A. S. Tanenbaum, A. S. Woodhull., és magyarul is: Galambos Gábor, Knapp Gábor és Adamis Gusztáv. Ehhez a szakterülethez tartozik több népszerű probléma/esettanulmány, például a vacsorázó bölcsek problémája, illetve a Santa Claus Problem, vagyis a Télapó probléma.

A Télapó probléma specifikációját és megoldását a konkurens programozás eszközeire építve J. A. Trono készítette el (szemaforokkal), amire építve is – és kritizálva is azt – több Java implementáció is elkészült (például: P. Steiner), valamint több programozási nyelv szálkezelési lehetőségeinek összehasonlításáról is publikált J. Hurt és J. B. Pedersen és kliens-szerver elosztott környezetben is áttekintette a lehetőségeket D. Marchant és J. Kerridge. Ismert Haskell, Erlang, Polyphonic C# implementáció is.

A Télapó probléma meghatározása

A Télapó alszik az északi-sarki boltjában és csak akkor ébredhet fel, ha mind a 9 rénszarvas visszatér a dél-csendes-óceáni trópusi szigetén töltött rendes évi nyaralásukról, illetve ha akad néhány manó, akiknek nehézségei vannak az ajándékkészítés során. A 10 manó közül 1 manó problémája nem elég komoly ahhoz, hogy felébressze a Télapót (egyébként sosem aludna), így 3 manó megy egyszerre a Télapóhoz. Amikor a 3 manó problémáit közösen megoldották, akkor mind a 3 manónak vissza kell térnie a többi manóhoz, mielőtt egy újabb manólátogatás megtörténne. Ha a Télapó úgy ébred, hogy 3 manó várja őt a bolt ajtajánál és az utolsó rénszarvas is visszatért a trópusokról, akkor a Télapónak fontosabb, hogy olyan gyorsan elinduljon a szánnal, amilyen gyorsan csak lehetséges – így a manóknak várniuk kell karácsony utánig. Feltételezzük, hogy a rénszarvasok nem akarják elhagyni a trópusokat, ezért az utolsó pillanatig maradnak, amíg csak lehetséges. Lehet, hogy egyáltalán nem is jönnének vissza, ameddig a Télapó fizeti a számlát a paradicsomban… Ez is megmagyarázhatja az ajándékok kiszállításának gyorsaságát, hiszen a rénszarvasok alig várják, hogy visszatérhessenek oda, ahol meleg van. Az utolsóként érkező rénszarvas büntetést kap a Télapótól, mialatt a többi rénszarvas a meleg kunyhóban várja, hogy befogják őket a szán elé.

A Télapó probléma – egyik – megoldása

Találtam egy kb. 10 perces kiváló YouTube videót/animációt (The Santa Claus Problem Thread Synchronization), amely lépésenként felépíti a feladatot, érzékelteti a közben felmerülő problémákat, és megoldást is mutat. Ezt ajánlom december 6-án minden érdeklődő figyelmébe:

Megjegyzés: a videót nem mi készítettük. 2017-től 2020-ig az eredeti linkről ágyaztuk be a blog bejegyzésbe a videót. 2020-ban a videót az eredeti linkről (https://www.youtube.com/watch?v=pqO6tKN2lc4) eltávolították. A blog bejegyzésbe jelenleg beágyazott videó a 2017-es mentett változat.

A feladatot részletekbe menően és komplex módon gondolkodva kell megtervezni, és implementációi komoly nyelvi eszköztárat igényelnek. Érdemes P. Steiner Java megoldását részletesen átnézni, újragondolva – újabb nyelvi eszköztárral – implementálni.

A feladat a Java EE szoftverfejlesztő tanfolyam 1-4. óra: Elosztott alkalmazások, webszolgáltatások, illetve 5-8. óra: Szálkezelés, párhuzamosság alkalmaihoz kapcsolódik.

Fibonacci nap

Fibonacci logó

Fibonacci logóA Fun Holidays – Fun, Wacky & Trivial Holidays weboldal sokféle különleges ünnepnapot listáz. Ezek leírása többnyire vicces, emlékezős, de néhány igazán érdekes, régi-régi hagyományt elevenít fel.

Ma van (november 23.) a Fibonacci nap. Fibonacci középkori matematikus volt, ő tette közismertté a Fibonacci-sorozat-ot. A (0), 1, 1, 2, 3, 5, 8, 13, 21, 34, sorozat igen népszerű azok közében is, akik programozást tanulnak. A sorozat első két eleme 1 és 1 (ha szükséges, akkor nulladik elemmel is dolgozhatunk), és minden további elem az előző két elem összege. Többféle történet is fűződik ehhez, talán az egyik legismertebb a nyúlpárok szaporodásához kötődik.

Honnan származik a Fibonacci nap? A mai nap hh.nn. formátumban 11.23. , és a számjegyek részei a Fibonacci-sorozatnak. Mindössze ennyi, ilyen egyszerű. 😉

A sorozat elemei könnyen előállíthatók néhány változó használatával. Ha a kezdő programozó már ismeri a ciklust – algoritmikus építőelemként –, akkor ez az iteratív megoldás. A rekurzív megoldás tipikus rossz megoldásként ismert. Lássuk az utóbbi Java megvalósítását:

Ha kiadnám a fenti Java forráskódot papíron ezt egy dolgozatban, zárthelyin, állásinterjú szakmai részén azzal a kérdéssel, hogy mit ír ki a program a képernyőre, akkor bizony sokan bajban lennének. Meg is történt ez már sokszor, tapasztalatból írom. A rekurzió első leszálló ágáig szinte mindenki eljut, de az ott induló első felszálló ágat követően sokan belezavarodnak a részlépések egymásutániságába. A végeredményt szinte mindenki tudja, de itt most arra helyezzük a hangsúlyt, hogy hogyan jutunk el odáig. Persze n=5-re fib(5)=5. Alig fordult még elő, hogy valaki hibátlanul leírta volna az alábbi eredményt:

A megoldás során – emlékeztetek arra, hogy ez atipikus megközelítés – sok-sok redundáns lépés történik. Hiszen például a fib(3)-at tudni kell a fib(4)-hez és a fib(5)-höz is, hiszen fib(4)=fib(2)+fib(3) és fib(5)=fib(3)+fib(4), valamint ebben az implementációban nincs semmilyen emlékezet (puffer, adatszerkezet), amivel a sok feleslegesnek vélhető számítást elkerülhetnénk.

Nyert ügye lehet annak, aki „fejben összerakja” az alábbi fát – akár dinamikusan, menet közben hozzáadva és törölve elemeket – és ebben navigálva (ezt bejárva) válaszolja meg a kérdést:

Fibonacci-sorozat-n=5

Az alábbi animáció segíthet a megértésben. 45 lépésben mutatja be az aktuális részlépést/részfeladatot (leszálló ág) és/vagy az aktuális részeredményt (felszálló ág):

Fibonacci-sorozat-n=5

A Fibonacci-sorozat többféleképpen kapcsolódik a természethez, természeti jelenséghez, növényekhez, állatokhoz. Például: virágszirmok száma, levelek elfordulása, napraforgók magjai, fenyőtoboz pikkelyei, nautilus háza, aranymetszés, zenei hangolás, zeneművek tagolása). A Fibonacci-sorozat felhasználható algoritmusok futási idejének becsléséhez, fa adatszerkezetek építéséhez is. Az aranymetszésről megoszlanak a vélemények. Vannak akik szinte mindenben ezt látják (művészet: festészet, szobrászat), mások módszeresen cáfolják ezt. Utóbbira példa Falus Róbert: Az aranymetszés legendája, Magyar Könyvklub, 2001, második, javított kiadás, ISBN 963-547-332-X.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalmához kötődik.

JFreeChart grafikon készítése

grafikon

grafikonXML formátumban megkapott adatokat grafikonon jelenítünk meg. 5 összetartozó adat/tulajdonság sorozatát dolgozzuk fel: JOB_TITLE, EMPLOYEE_COUNT, MIN_SALARY, AVG_SALARY, MAX_SALARY. Az adatforrásban egyszerű életpálya modell szerint munkakörönként meghatározott az adható minimális és maximális fizetés (ez a 3 adat közvetlenül rendelkezésre áll). Minden alkalmazottra teljesül, hogy a fizetése beletartozik ebbe a zárt intervallumba. Az adatforrás feldolgozása során COUNT és AVG aggregáló függvényekkel előállítjuk – munkakörönként csoportosítva – az alkalmazottak létszámát és átlagfizetését (ez a további 2 adat). Az Oracle HR sémából lekérdezve 19 munkakört kapunk, így az XML fába is ennyi <JOB_STAT> csomópont kerül. A megfelelő pillanatban rendelkezésre álló 5 összetartozó adat exportálható XML formátumba az alábbiak szerint:

Az elkészült grafikon így jelenik meg:

A JFreeChart típusú grafikont az alábbi forráskóddal készítettük el:

A grafikon rendelkezik vizuális komponens mögötti adatmodellel, hiszen MVC szerkezetű komponens. Ez egy CategoryDataset típusú objektum. Ennek factory metódusa három paramétert vár: a jelmagyarázatot (rowKeys – legends), az Y tengelyen megjelenő feliratokat (columnKeys – jobTitleCountEmployees) és az adatokat (data – datas). Az első 3 elemű String[]: "Maximum fizetés", "Átlagfizetés", "Minimum fizetés". A második 19 elemű szöveges tömb: "Accountant (5 fő)", "Accounting Manager (1 fő)", …, "Stock Manager (5 fő)". A harmadik 3*19-es méretű kétdimenziós double típusú tömb, a megjelenítendő értékekkel: {{9000, 7920, 4200}, {16000, 12000, 8200}, , {8500, 7280, 5500}}.

A szükséges adatok megadását követően meg kell adni a grafikon megjelenítését meghatározó adatokat. Ezt egy CategoryPlot típusú objektum teszi lehetővé, amely konstruktora négy paramétert vár. Az első az adatforrás ( cd), a második az Y tengely felirata ( "Munkakör és létszám"), a harmadik az X tengely – alapértelmezetten felül megjelenő – felirata ( "Fizetés"), a negyedik a diagramtípushoz tartozó megjelenítő funkcióra utaló interfész képességeivel rendelkező névtelen objektum. Ez a 3D oszlopdiagram fekvő és egymást részben átfedő/eltakaró oszlopokkal jelenik meg.

Végül az elkészült ChartPanel típusú objektumra helyezett JFreeChart típusú diagramot hozzá kell adni a JFrame típusú GUI tartalompaneljének egy BorderLayout elrendezésmenedzserű paneljéhez.

Az elkészült grafikon többféle szakterületen is hasznos lehet. Értelmezése során összefüggéseket fogalmazhatunk meg és következtethetünk is.

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat adatfeldolgozó része a Java EE szoftverfejlesztő tanfolyam 9-12. óra: XML feldolgozás, a grafikont megjelenítő része a Java SE szoftverfejlesztő tanfolyam 29-36. óra: Grafikus felhasználói felület alkalmához kapcsolódik.

Péntek 13

Péntek 13

Péntek 13Sokan szerencsés vagy balszerencsés napnak tartják a péntek tizenharmadikát. Évente 1-2-3 alkalommal megtörténik, hogy a hónap 13. napja péntekre esik (minden vasárnap kezdődő hónapban). A hónap 13. napja valamivel valószínűbben péntekre esik, mint a hét bármely más napja. Átlagosan 212,35 naponként fordul elő péntek 13. Előfordulhat két egymást követő hónapban is, de akár 14 hónap is eltelhet két péntek 13 között.

A nap említése sok helyen előfordult: regényekben, filmekben, híres emberek születése vagy halála is esett péntek 13-ra. Átlag alatti közlekedési baleset szokott előfordulni ezeken a napokon – talán mert az emberek óvatosabbak. Kimutatható összefüggést/korrelációt, „péntek 13 hatást” figyeltek meg a tőzsdén is.

Hasznos lehet, ha írunk egy Java programot, amely néhány egymást követő év esetén listázza a konzolra azokat a hónapokat, amikor 13-a péntekre esik.

Tervezés

Legyen egy listFriday13(year) eljárás, amely a paraméterként átvett évben kiírja azokat a hónapokat a konzolra, amelyekben 13-a péntekre esett/esik. Például: 2017: január, október. A hónapok nevei magyar nyelven jelenjenek meg. Az adott év hónapjain végighaladó ciklus legyen hatékony. Optimalizáljunk a ciklus lépésszámára! A ciklus álljon le, ha már talált 3 hónapot (mivel nem lehet több).

1. megoldás

A megoldást a tematika Tömbök témakörében az alábbiak szerint készíthetjük el. Előismeretek: változók, operátorok, ciklusok, programozási tételek, metódusok, tömbök, String összehasonlítás. Az ismert öröknaptár algoritmusokból implementáljuk az egyiket, például:

A listFriday13v1(year) eljárásban az elemi döntés egyszerű: dayOfWeek(year, month, 13).equals("Friday"). Épít az öröknaptárt megvalósító – saját – szöveget visszaadó függvényre. A függvény az algoritmus szerinti kódok előállításához ( centuryCode, monthCode, dayCode) felhasználja a szökőév ( isLeapYear(year)) függvényt, valamint két – konstansnak is tekinthető – névtelen tömböt ( new int[], new String[]).

2. megoldás

A megoldást a tematika Objektumorientált programozás témakörében az alábbiak szerint készíthetjük el. Felhasználjuk eddigi ismereteinket és a JDK beépített dátumkezelő (tároló, formázó) funkcióit (osztályok, interfészek, konstansok, felsorolások).

A listFriday13v2(year) eljárás a Calendar absztrakt osztály konstansait használja fel az elemi döntéshez: date.get(Calendar.DAY_OF_WEEK)==Calendar.FRIDAY. A dátumot a GregorianCalendar konstruktora példányosítja és figyelni kell a 0-bázisú hónapkezelésre. A dátum formázása során ( dfMonth) beállítjuk a megfelelően paraméterezett ( "hu") Locale típusú objektumot és a hónap hosszú nevét kérjük ( "MMMM"). A metódus generikus listába gyűjti a kiválasztott hónapok nevét, amiket végül a String.join() függvény fűz össze a megjelenítéshez.

Eredmény

A vezérlésben egy ciklus 2017-től 2036-ig szervezve az alábbi eredményt adja:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik a fentiek szerint: 13-16. óra: Tömbök alkalom, illetve 17-28. óra: Objektumorientált programozás alkalom.

Aki gyakorolna a témához kötődően: írjon olyan Java programot, ami listázza a konzolra a 21. század éveit olyan hónapokba csoportosítva, amikor 13-a péntekre esik. Egy év többször is előfordulhat. Például: január – 2006, 2012, 2017, 2023, 2034, 2040, 2045, 2051, 2062, 2068, 2073, 2079, 2090, 2096. A megoldásokat hallgatóinktól az ILIAS-ra, érdeklődőinktől hozzászólásban várjuk.