Fibonacci-sorozat

Fibonacci nap

Fibonacci napMa van (november 23.) a Fibonacci nap (újra). Fibonacci középkori matematikus volt, ő tette közismertté a Fibonacci-sorozat-ot. A (0), 1, 1, 2, 3, 5, 8, 13, 21, 34, sorozat igen népszerű azok közében is, akik programozást tanulnak. A sorozat első két eleme 1 és 1 (ha szükséges, akkor nulladik elemmel is dolgozhatunk), és minden további elem az előző két elem összege.

Korábban is blogoltak a kollégáim a témában:

Következzen most az én öt különböző megoldásom Java forráskódja, rövid magyarázattal. Mindegyik a Fibonacci-sorozat első tíz elemét állítja elő.

1. megoldás

Az első megoldás generikus listát épít. Az első két elemet elhelyezi a lista elején ( list.add(1)). Ezek a lista nulladik és első elemei lesznek. Ezután a metódus a maradék 8 elemmel 2-től n-1-ig fiktív indexként hivatkozva az előző két elem összegeként ( list.get(i-1)+list.get(i-2)) index nélkül bővíti a listát.

2. megoldás

A második megoldás a tipikusan nem hatékony rekurzív módszert implementálja. A rekurzív fib() függvény a sorozat egyetlen elemét adja vissza, amit (a függvényt) a ciklus sokszor meghív ahelyett, hogy a ciklus vagy a rekurzió „emlékezne” az előző elemekre.

3. megoldás

A harmadik megoldás funkcionális nyelvi elemeket (Stream API) használ. A folyamba kétdimenziós tömbre történő hivatkozással ( f-> new int[] ), közvetlen hozzárendeléssel/leképezéssel ( map()), kerülnek be a sorozat elemei.

4. megoldás

A negyedik megoldás a Fibonacci-számok zárt alakját használja. Másképpen ez a Binet-formula:

Ezzel a képlettel a sorozat elemei közvetlenül megadhatók, azaz nem szükséges más elemekre való hivatkozás. A ciklus adja meg, hogy a sorozat 1-10-ig indexelt elemei szükségesek.

5. megoldás

Az ötödik megoldás szintén Stream API-t használ. Először előállít egy sorozatot 1-10-ig, amiket a leképezésnél ( map()) inputként használ és alkalmazza rájuk a Binet-formulát. Hagyományos ciklus utasítás nem szükséges.

Eredmény

Mindegyik megoldás a konzolra írja szövegesen az eredményt, azaz a Fibonacci-sorozat első tíz elemét: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. Érdemes elemezni a hatékonyság klasszikus három szempontja (időigény/lépésszám, tárigény, bonyolultság) alapján a különböző megoldásokat. Ezek mérésével könnyen kiegészíthetők a fenti metódusok, vagy az azokat meghívó osztályban a vezérlés.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió és 17-28. óra Objektumorientált programozás alkalmaihoz kötődik.

Tankocka – Egyszerű sorbarendezés: Java forráskód

Folytatjuk Tankockák blog bejegyzés sorozatunkat. A feladatban helyes sorrendbe kell állítani a Java forráskód sorait. Ez főként a Java SE szoftverfejlesztő tanfolyamunk tematikájához kötődik.

A Java program véletlenszerű ötöslottó szelvényt állít elő. Adatszerkezetként generikus listát használ. Amikor csak lehet, épít a kollekció beépített képességeire (eldöntés, sorozatszámítás, rendezés). A szakterületnek megfelelően az ötöslottó szelvényen tárolt számok „emelkedő számsorrendben” jelennek meg. A forráskódban nincs jelölve a csomag, importok, behúzás, tagolás, igazítás.

Egy matematika érettségi feladat megoldása programozással 2022

érettségi logó

érettségi logóA 2022-es középszintű matematika érettségi feladatsor eléggé egyszerű volt, de azért a 6. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá a megszámolás programozási tétel. Többféle megoldás/megközelítés (iteratív és rekurzív) is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

6. feladat

Egy feleletválasztós teszt 5 kérdésből áll, minden kérdésnél négy válaszlehetőség van. Hányféleképpen lehet az 5 kérdésből álló tesztet kitölteni, ha minden kérdésnél egy választ kell megjelölni?

1. megoldás

Rögtön tudjuk, hogy ez kombinatorika, n elem k-ad osztályú ismétléses variációja, amelynek paraméterei: n=4, k=5. A hatványozás azonosságainak ismeretében fejből is tudjuk a megoldást: 45=210=1024. A Java forráskód elvégzi a hatványozást. A Math.pow() függvény általánosabb, mint amire most szükségünk van. Fogad double valós paramétereket és double típusú értékkel tér vissza. Ezért hasznos az (int) explicit típuskényszerítés.

Másképpen: négy elemű halmazból öt elemet kiválasztunk és ezeket sorba rendezzük (permutáljuk) és egy elemet egy csoportban akár ötször is felhasználhatunk. Számít a sorrend. A lehetséges variációk száma: 1024.

2. megoldás

Ha hasznos lenne egy általános metódus az ismétléses variáció kiszámítására, akkor ez egy tipikus megoldás lehet erre. Kiegészítendő még a két paraméter előjelének ellenőrzésével.

3. megoldás

Ha a megértést segíti, akkor a teljes leszámolás (brute force) módszerével, egymásba ágyazott ciklusokkal könnyen kiírathatjuk a konzolra az 1024 db különböző válaszlehetőséget. A k-val kezdődő sorszámozott ciklusváltozók jelölik az öt kérdést, azon belül az 'a'-tól 'd'-ig karakterek adják a válaszlehetőségeket. Eredményül ezt kapjuk (görgethető):

4. megoldás

Ha csak a végeredmény szükséges, akkor ez az iteratív megoldás a megszámolás programozási tétellel előállítja azt.

5. megoldás

Ez egy rekurzív megoldás. Ciklus helyett a metódus önmagát hívja meg, így valósul meg az ismételt utasításvégrehajtás. A válaszlehetőségek összefűzésével (konkatenáció) előállított válasz akkor megfelelő, ha annak hossza öt. Ez esetben kiíródik a válaszlehetőség a konzolra (mintegy mellékhatásként). Ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

6. megoldás

Szintén, ha csak a végeredmény szükséges, akkor ez a mellékhatással rendelkező rekurzív metódus előállítja azt. A mellékhatás most az, hogy a metódus eljárás és nem függvény és szükséges hozzá a db osztályváltozó (ami a metódushoz képest globálisnak is tekinthető).

7. megoldás

Ez a megoldás a válaszlehetőségeket megfelelteti n alapú számrendszerben k számjegyből álló számoknak. A kétdimenziós tömbben számokat tárol, így:

  • 1,…,1,1 → 0…0000
  • 1,…,1,2 → 0…0001
  • 1,…,1,n → 0…001(n1)
  • 1,…,2,n → 0…001(n1)
  • n,…,n,n → (n1)...(n1)

Végül a kiíró ciklus ezeket a számokat karakterekké alakítja ( 'a' ASCII kódja 97) és fordított sorrendben írja ki, hogy ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

Továbbfejlesztési lehetőségek

  • A 2. megoldáshoz: teszteljük le a lehetséges túlcsordulást és az int típus helyett szükség esetén használjunk long típust!
  • A 3. megoldáshoz: építsünk kétdimenziós tömb adatszerkezetet, amiből később az i-edik válaszlehetőség megadható!
  • Előzőhöz: állítsuk elő lexikografikus sorrendben az i-edik válaszlehetőséget adatszerkezet felépítése nélkül!
  • A 6. megoldáshoz: valósítsuk meg a rekurzív gondolatmenetet mellékhatás nélkül!
  • Teszteljünk: mennyi idő alatt hajtódik végre a 4. és a 6. megoldás? Mekkora paraméterekkel érzékelhető, hogy a rekurzió jóval lassabban fut?
  • A 7. megoldáshoz: cseréljük le az egésztömb adatszerkezetet karaktertömbre!

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, valamint 21-24. óra: Objektumorientált programozás 1. rész alkalmaihoz kötődik.

Skandináv lottó demóprogram

Skandináv lottó (heteslottó) demóprogramot tervezünk és írunk meg Java nyelven. Lépésenként mutatja meg, hogy mi történik a háttérben: hogyan állítja elő véletlenszerűen a lottószelvényt.

Az emlékezet egy logikai tömb. Ebben 36 elem van. A nulladik elem nem számít, és legyen a többi elem (1-35-ig indexelve) kezdetben mind hamis. A cél: legyen a tömbben pontosan 7 db igaz érték. Másképpen: a logikai tömb a lottószelvényen megjátszható számok kiválasztottságát jelöli, igen vagy nem. A heteslottó-szelvény 7 db 1 és 35 közötti különböző egész számból áll.

Mindig 1 és 35 közötti egész véletlenszámot tippelünk. Kezdetben jóSzámDb=0. Az első tipp biztosan jó és jóSzámDb=1. A többi tipp esetén vizsgálni kell, hogy már kiválasztott-e. Ha igen, akkor nincs teendőnk. Ha nem, akkor meg kell jegyezni (kiválasztottá kell tenni, azaz igazzá kell állítani a logikai tömbben) és a jóSzámDb++ (növelhető). Mindezt ciklusban ismételjük, amíg a jóSzámDb<7 feltétel teljesül (másképpen: amíg nincs elegendő kiválasztott szám a szelvényen). Mindez biztosítja az egyediséget, különbözőséget. Ha jóSzámDb==7, akkor kiírjuk a lottószelvényre kerülő számokat az alapján, hol (melyik indexen) van a logikai tömbben igaz érték.

Tekintsük át az alkalmazott módszer hátrányait és előnyeit. Hátrány, hogy 36 logikai érték szükséges ahhoz, hogy 7 különböző számot előállítsunk. Előny, hogy egyszerű az algoritmus (nem kell keresés és megszámolás programozási tétel) és nincs szükség rendezésre sem, mert a szakterületre jellemző „emelkedő számsorrend” a logikai tömb bejárásával önkéntelenül is adódik. Hangsúlyozzuk, hogy ez csupán egyetlen módszer a nagyon sok izgalmas közül, amikkel generálható egy véletlenszerű lottószelvény.

A megvalósítás, Java forráskód egyszerű. Íme egy függvény, amely visszaadja azt kiválasztottságot jelölő logikai tömböt, amiből megfelelően indexelve kiíratható a véletlenszerűen generált lottószelvény:

Egy demóprogram, szimulációs program, oktatóprogram esetén nem is a konkrét feladat megoldása a cél/probléma. Sokkal inkább a lépésenkénti bemutatás, sok-sok konzolos kiírással vagy grafikus szemléltetéssel. Sokszor időzítővel késleltetjük, lassítjuk, gyorsítjuk a folyamatot, de előfordul az is, hogy rengetegszer megismételjük a tevékenységet és a kapott adatokat elemezzük, következtetünk belőlük. Most például a ciklust ki kell cserélni olyan léptetésre, ami a felhasználó kattintásához kötődik. Ha kéri a következő tippet a lottószelvényre, akkor megkapja. Ha nem kattint, akkor nem kapja meg. Az is egy csalás/lehetőség lenne, hogy a háttérben nem is logikai tömb adatszerkezet van, csupán a vizualizáció miatt tűnik annak.

Az elkészült demóprogram megvalósítja a fenti algoritmust. Az alábbi képernyőképeken végiglapozható a demóprogram működése. Nem is az algoritmus megvalósítása a kihívás és a cél, hanem a folyamat lépésenkénti megjelenítése. Java swing grafikus felület készült el.

 

A demóprogram Start állapottal indul. Olyan a lépésenként tesztesetek sorozata, hogy a lottószelvény nem sikerül rögtön elsőre. Az egyik szám már előfordult korábban. A demóprogram Stop állapottal ér véget. A demóprogram pénztárszalagszerűen időnként jelzi, hol tart éppen. A demóprogram képes egymás után több lottószelvényt is előállítani és az emlékezete egyetlen szelvényre korlátozódik.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni. A Java EE szoftverfejlesztő tanfolyamunkon, a szakmai modul 33-40. óra Java Server Pages alkalmain már a program böngészőben futó változatát is el tudjuk készíteni.

Egy matematika érettségi feladat megoldása programozással 2021

érettségi logó

érettségi logóA 2021-es középszintű matematika érettségi feladatsor 12. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, megszámolás, kiválogatás. Többféle megoldás/megközelítés is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

A háromjegyű pozitív egész számok közül véletlenszerűen kiválasztunk egyet. Mennyi annak a valószínűsége, hogy a kiválasztott szám számjegyei különbözők? Megoldását részletezze!

1. megoldás

Az 1. megoldás egymásba ágyazott ciklusokkal behelyettesíti a szóba jöhető 900 db háromjegyű szám számjegyeit. A feltétel 648 esetben teljesül. Három számjegy azonosságát két részfeltétel és kapcsolatával eldönthetnénk a trichotómia miatt. Három számjegy különbözőségéhez három részfeltétel és kapcsolatából áll össze a feltétel. A válasz a kedvező és összes eset aránya/hányadosa, azaz 0,72. Másképpen 648 db szám a 900 db háromjegyű szám közül. A megoldás lépésszáma 900.

2. megoldás

Az egymásba ágyazott ciklusok lépésszáma összeszorzódik. A legbelső ciklus az előtte lévő feltételtől függően kevesebbszer is végrehajtódhat, hiszen a százas és tízes helyiértéken lévő számjegyek egyezése esetén nincs értelme az egyes helyiértéken lévő számjegy vizsgálatának. Így a 2. megoldás lépésszáma 810, azaz 10%-kal kevesebb. Ez a három részből álló feltétel két részre bontásával érhető el.

3. megoldás

A 3. megoldásban egyetlen ciklus végzi a vizsgálatot, a megszámolást. A ciklusváltozó már nem számjegy, hanem maga a háromjegyű szám, amiről döntést kell hozni: különbözik-e mindegyik számjegye vagy sem. Három beszédes nevű segédváltozó segít értelmezni a Java forráskódot. Ezek az egész osztás és a maradékos osztás műveleteivel állíthatók elő.

4. megoldás

A 4. megoldás logikai visszatérési értékű segédfüggvényt alkalmaz. Ez egy menekülőutas megoldás. Ha kizáró feltétel szerint már döntést tudunk hozni (például megegyezik a százas és a tízes helyiértéken lévő számjegy), akkor hamis értékkel menekülünk. Egyébként ág nélkül ezután következhet az egyes helyiértéken lévő számjegy összehasonlítása a többivel. A második feltétel az eddigiekhez képest tagadott, mert a menekülés a cél. Ha nincs menekülés amiatt, hogy volt két megegyező számjegy, akkor – a feltételek egymásra épülése miatt – nincs más hátra, mint igaz értékkel visszatérni (ami azt jelenti, hogy nem volt egyezés, azaz minden számjegy különbözött).

5. megoldás

Az 5. megoldás segédfüggvénye a háromjegyű szám esetén a különböző számjegyek darabszámával tér vissza. A röptében előállított százaz, tízes, egyes helyiértékeken lévő számjegyekből folyam adatszerkezet készül, aminek feldolgozását a Stream API műveletei (egyediesítő, megszámoló) végzik el. Ezt a vezérlő ciklusban hárommal összehasonlítva léptethető a megszámolást megvalósító változó, hiszen ha teljesül a feltétel, akkor eggyel több megfelelő szám van, mint előtte volt.

6. megoldás

Az 6. megoldás újra másképpen közelít. Ha könnyebbnek tűnik az a feltétel, hogy mikor nem jó (kedvezőtlen) nekünk egy szám, akkor beépíthetjük ezt is. Megszámoljuk azokat a háromjegyű számokat, amelyeknél egy vagy két számjegy azonos, majd ez kivonjuk a háromjegyű számok darabszámából.

7. megoldás

A 7. megoldás már mindent folyamokkal old meg, azok képességeire építve. Az összes háromjegyű számot előállítja, majd rajtuk kiválogatás programozási tételt (szűrőt) használ (az 5. megoldás segédfüggvényére építve), végül a folyamban maradó számokat megszámolja. Ez a megoldás már olyan haladóknak való, akik magabiztosan építik össze a Stream API műveleteit és a lambda kifejezéseket. Mindent egyben. Persze hol itt a hatékonyság? Hozzászólásokban megbeszélhetjük.

8. megoldás

A 8. megoldás szintén folyam adatszerkezettel működik, de négy egymást követő lépésben végez szűrést (kiválogatást). A 900 db háromjegyű számból indulunk ki. Az 1. szűrő kihagyja a 9 db AAA számot, amelyek számjegyei azonosak és így marad utána 891 db szám. A 2. szűrő után marad 810 db szám, mert kimarad az a 81 db AAB alakú szám (ahol a százas és tízes helyiértéken lévő számjegyek megegyeznek) az összesen 90 db-ból, ami még a folyamban maradt az 1. szűrő után. A 3. szűrő kihagy 81 db ABB alakú számot és meghagy 729 db számot. A 4. szűrő kihagy 80 db ABA alakú számot és meghagy 648 db ABC alakú számot.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, valamint 21-24. óra: Objektumorientált programozás, 2. és 3. rész alkalmaihoz kötődik.