A Pi grafikus ábrázolása

A nemzetközi Pi nap alkalmából (március 14) Java programmal grafikusan ábrázoljuk a π számjegyeit. Kiindulunk egy négyzet alakú grafikus felület középpontjából. Ezt tekintjük origónak. Sorra vesszük a π első néhány számjegyét: 100, 1000, 10000 paraméterezhető módon. Minden számjegyet egy rövid szakasszal ábrázolunk. A szakaszok egymást követik. Az előző végpontja megegyezik a következő kezdőpontjával. A rajzolás elejét és végét kör jelzi.

Tervezés

Az alábbi szabály alapján döntjük el, hogy a π előforduló számjegyei esetén melyik irányba és milyen színnel rajzolunk szakaszt:

A π első 100000 db számjegyét tároljuk egy szövegfájlban. Ömlesztve, sortörés, tizedesvessző nélkül. Így a π első 30 számjegye: 314159265358979323846264338327. A szövegfájl helyét a String PI_FILE  konstans jegyzi meg. A paraméternek megfelelően ebből vesszük az első N db számjegyet. Ezt a Java program beolvassa egy String típusú pi szövegobjektumba. A számjegyek összetartozó adatait egy Digit osztály rendeli egymáshoz. Ennek három adattagja van: melyik számjegy: int digit, melyik irányba kell szakaszt rajzolni java.awt.Point direction, milyen színnel kell szakaszt rajzolni java.awt.Color color. A tízféle színt egy konstans tömb tárolja: Color[] COLORS.

Részletek a Java forráskódból

A π tízféle számjegyéből az alábbi forráskód-részlettel létrejön egy tömb adatszerkezet: Digit[] digits. A koordináták/vektorok kiszámítása követi az analóg óra számlapjának 36 fokonként való felosztását.

A rajzoláshoz szükséges még néhány konstans: milyen vastag vonalat kell rajzolni: double PEN_RADIUS, mekkora átmérőjű kör jelzi a rajzolás kezdő- és végpontját: double POINT_RADIUS, milyen hosszú vonalat kell rajzolni: int LINE_LENGTH, a rajzterületet mekkorára kell méretezni/skálázni: int SCALE.

Mindezek alapján az alábbi forráskód-részlet vizualizálja a π számjegyeit:

Eredmény

Eredményül ezek az ábrák készíthetők el:

A rajzoláshoz felhasználtuk az StdDraw osztályt, amely ennek a tankönyvnek a példatárából származik: Robert Sedgewick, Kevin Wayne: Computer Science: An Interdisciplinary Approach, 1st edition, Princeton University, Addison-Wesley Professional, 2016, ISBN 978-0134076423. Az osztály metódusaival könnyen beállítható a nézőpont, a vízszintes/függőleges skála, a rajzoláshoz használt toll mérete/színe és a grafikai primitívek közül csak a kör és szakasz ábrázolása szükséges.

Korábban is megemlékeztünk néhány közelítő algoritmus – Viète-féle sor, Leibniz-féle sor, Wallis-formula, Csebisev-sor – implementálásával erről az ünnepnapról: Nemzetközi Pi nap. Ajánljuk korábbi blog bejegyzéseinket rajzolás, animáció, grafika címkékkel, illetve ASCII művészet Java-ban.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, 17-28. óra: Objektumorientált programozás, 29-36. óra: Grafikus felhasználói felület, 37-44. óra: Fájlkezelés alkalmaihoz kötődik.

Szívgörbe ábrázolása

Szívgörbét ábrázolunk Java programmal. A Valentin-nap inspirálta ezt a feladatot. Számos matematikai görbe ismert, amelyek szívformához (kardioid) hasonlítanak. Szükséges egy megfelelő paraméteres görbe. A függvény szív formájú ábrája/grafikonja és egyenletrendszere alapján is nagy a választék.

Ábrázoljuk ezt a paraméteres szívgörbét Java swing GUI felületen!

A szívgörbe ábrázolásához felhasználom az StdDraw osztályt, amely ennek a tankönyvnek a példatárából származik: Robert Sedgewick, Kevin Wayne: Computer Science: An Interdisciplinary Approach, 1st edition, Princeton University, Addison-Wesley Professional, 2016, ISBN 978-0134076423. Az osztály metódusaival könnyen beállítható a nézőpont, a vízszintes/függőleges skála, a rajzoláshoz használt toll mérete/színe és a grafikai primitívek közül csak a pont ábrázolása szükséges.

Négy megoldást mutatok. Mindegyik azonos szívgörbét rajzol a fenti egyenletrendszer alapján. Mindegyik metódus átveszi az N paramétert, amely az összetartozó x és y koordinátapárok számát jelenti. Az N db pont meghatározása/kiszámolása szükséges a szívgörbe ábrázolásához. A szívgörbe ábrázolása önálló ablakban – grafikus felhasználói felületen – jelenik meg. A feladat matematikai jellegéből adódik, hogy tipikus a t nevű ciklusváltozó használata. A metódusokat a vezérlés az 512 paraméterrel hívja meg.

1. megoldás

A heartCurveDraw1() metódus a kiszámolt x és y koordinátákat két párhuzamos, double típusú tömb adatszerkezetben tárolja. A két tömbbe összesen 2*N db double típusú szám kerül. Azonos index jelöli az összetartozó koordinátapárokat. Az egymást követő két ciklus közül az első előállítja az adatszerkezetet és a második megjeleníti a pontokat.

2. megoldás

A heartCurveDraw2() metódus a párhuzamos tömbök helyett adatszerkezetként egyetlen tömböt használ. A java.awt.geom csomag Point2D osztályú objektumai kerülnek a tömbbe. Mivel a Point2D absztrakt osztály, így a Double() osztálymetódusával (factory method) példányosítható úgy, hogy a szükséges koordinátapárokat megfelelően tudja tárolni. A tömbbe N db objektum kerül.

3. megoldás

A heartCurveDraw3() metódus nem használ tömb adatszerkezetet. Tehát nem emlékszik az összes pont koordinátájára. Ehelyett a ciklus röptében, egyesével létrehozza a pontobjektumokat és azonnal ki is rajzolja azokat (átmeneti az emlékezet).

4. megoldás

A heartCurveDraw4() metódus Stream API-t és lambda kifejezéseket használ. Az első N természetes számból készül egy sorozat, amihez röptében hozzákötődik a t-edik Point2D típusú objektum. Ezzel létrejön egy folyam adatszerkezet. Tehát van egy pillanat, amíg a program emlékszik az összes folyambeli pontobjektumra. Végül a folyam feldolgozása, bejárása során egyesével megszólítva a folyam objektumait, a pontok kirajzolódnak a vászonra.

A vezérlés

Az eredmény

A szívgörbe önálló – swing, grafikus felhasználói felület, GUI – ablakban így jelenik meg:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat – a matematikai háttértől eltekintve – a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, valamint a 29-36. Grafikus felhasználói felület alkalmaihoz kötődik.

A 2D szívforma egyenletrendszerét erről a weboldalról választottam: Heart Curve – from Wolfram MathWorld. Egy merész továbbfejlesztési ötlet: a haladóknak megtalálható a 3D szívforma ábrázolása is: Heart Surface – from Wolfram MathWorld.

Sándor is blogolt már a Valentin-nap témában: Rómeó és Júlia. Ebből kiderül, hogy vajon ki szereti jobban a másikat: Rómeó vagy Júlia.

Kép élesítése effektus működése

Ismert számos képfeldolgozó, képjavító effektus. Az egyszerűbb effektusok elérhetők ingyenes web- és mobil alkalmazásokban, PowerPointban. Az összetettebb (művészi) effektusokhoz, szűrőkhöz már érdemes professzionális eszközt használni, ilyen például az Adobe Photoshop. Ezek a belépő szint képeffektusai kulcsszavakban: élesítés (sharpen), homályosítás (blur), elmosódás (gaussian blur), folyadékszerű rajz (liquid), olajfestmény (oil painting), öregítés (sepia), szürkeskála (grayscale).

Lássuk, hogyan valósítható meg Java programozási nyelven a kép élesítése!

A kép adatszerkezete

Adott egy képfájl. Formátuma a tipikus, feldolgozhatók (JPG, GIF, PNG, WebP) egyike. Ezek rasztergrafikus képformátumok. Lekérdezhető a dimenziója: ez képpontban (pixelben) jelenti a kép szélességét (width) és a kép magasságát (height). A vászontechnika meghatározza a kép origóját (0, 0) és a képpontok kétdimenziós koordinátapárját. A kép origója a bal felső sarokban van. A kép oszlopai (column) jobbra haladva növekvő módon, a kép sorai (row) lefelé haladva növekvő módon számozottak. Egy pixel koordinátapárja (c, r) alakban írható le. Minden pixel három szín kombinációjaként áll elő (r, g, b). Másképpen: a piros, zöld és kék összetevők aránya alapján meghatározott. A tipikus színmélység alapján a színek külön-külön 256-félék lehetnek, és ezeket 0-tól 255-ig egész szám képviseli. A 0 az adott szín hiányát, a 255 a szín teljes intenzitását jelenti.

A kép élesítéséhez használható szűrőmátrixok

A kép élesítése során szűrőt alkalmazunk a kép belső pixeleire. A kép 4 szélén lévő pixeleket nem változtatjuk. Többféle szűrő közül választhatunk, íme két példa:

A három színösszetevőre külön-külön kell alkalmazni a szűrőt. Az aktuális pixel – amire alkalmazzuk a szűrőt – a 3×3-as mátrix középső eleméhez igazítva szorzóértékeket tartalmaz. A konkrét eset: az a mátrix esetén az 5 érték a 2. sor 2. oszlopában helyezkedik el; ennek a közvetlen szomszédos pixeleire a -1 értékek, átlós szomszédaira pedig a 0 értékek vonatkoznak. Eredményül a szűrt pixel színeit kapjuk meg külön-külön. Ha a kapott értékek kisebbek 0-nál, akkor nullázzuk őket. Ha a kapott értékek nagyobbak 255-nél, akkor beállítjuk azokat 255-re. Az a szűrőmátrix kevésbé élesít, a b szűrőmátrix erősebben élesít.

Természetesen sok más képélességhez köthető szűrő is van még. Olyanok is vannak, ahol nem csak a közvetlen szomszédos pixeleket veszi figyelembe az algoritmus. További kulcsszavak a témához kötődően: digitális képfeldolgozás, lokális operátor, korreláció, konvolúció, átlagszűrő, mediánszűrő, zajszűrő, Laplace-szűrő.

A kép élesítését megvalósító Java forráskód-részlet

A fenti a mátrixot a SHARP_FILTER konstans kétdimenziós tömb tárolja. A paraméterként átvett BufferedImage típusú img1 objektum kép pixeleinek végigjárását ütközőként segíti a w szélesség és h magasság. A data egydimenziós tömb sorfolytonosan tárolja a kép pixeleit. Az if elágazó utasítás igaz ága kezeli a kép 4 szélét (változatlanul hagyott másolt színek). Az if hamis ága a belső pixelekre alkalmazza a szűrőmátrixot. A red, green, blue változók tartalmazzák az aktuális pixel színeit, amelyekbe az eredeti pixelre alkalmazott szűrő által szorzott értékek kerülnek, „belekényszerítve” a 0-255 zárt intervallumba. Végül az eredményül visszaadott img2 kép pixelei kerülnek beállításra. Az alábbi sharpenEffect() függvény mindezt megoldja az alábbiak szerint:

A metódus meghívása a fájlkezelést is tartalmazó vezérlőmetódusban például így történhet:

Az eredeti és élesített képek összehasonlítása

A bal oldalon az eredeti kép, a jobb oldalon az a mátrixszal élesített kép látható:

A bal oldalon az eredeti kép, a jobb oldalon a b mátrixszal élesített kép látható:

A látvány alapján fontos kiemelni, hogy másképpen is lehet összehasonlítást végezni. Például: színtérkép, színmélység, színösszetevők aránya (hisztogram).

Ötletek továbbfejlesztésre

  • Konzolos program átvehetné parancssori paraméterként a szűrőmátrixot, vagy annak nevét, kódját, egyes értékeit.
  • Grafikus felületű programban vízszinten JScrollBar  GUI komponens(ek) segítségével paraméterezhető, kigörgethető lehetne a szűrőmátrix szélsőértéke(i).
  • A fenti effektek a kép összes pixelét érintik. GUI felületen megoldható az is, hogy ki tudjuk jelölni a kép egy-egy részét, amire alkalmazni szeretnénk az effektek. Ez a kijelölés többféle lehet, például téglalap alakú, szabálytalan, átlátszó, adott vagy adotthoz hasonló árnyalatú színű, vagy valaminek a körvonala.
  • Egy mappában lévő összes képre alkalmazható effekt, előnézettel, képfájlonként megerősítéssel, jóváhagyással, csoportos kijelöléssel, szűrővel.
  • Szürkeskála effekt megvalósítása és tesztelése az alábbi forráskód-részlettel:
  • Homályosítás effekt megvalósítás és tesztelése a 4 élszomszéd színeinek átlagolásával, így:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb GUI programot tervezni, kódolni, tesztelni, kiegészítve a 37-44. óra Fájlkezelés alkalmaihoz kötődő példaprogramokkal.

Java program memória használatának mérése

Három különböző megközelítésben generálunk szövegeket és töltjük bele ezeket generikus listába. Olyan környezetet építünk, amely képes tesztelni/mérni a Java program/környezet memória használatát előtte/utána. A tárigény (memória, háttértár, feldolgozandó adatok mennyisége, adatforgalom) fontos eleme a hatékonyságnak. Gyakran előfordul, hogy a tárigényt csökkenteni kell egy program tervezése, implementációja vagy továbbfejlesztése során.

Feladat

A Java program előállít 100000 db 20 hosszúságú szöveget véletlen kiválasztott angol ábécé-beli betűkből. A szövegeket generikus listába tölti be. A program méri az általa felhasznált memória méretét/nagyságát úgy, hogy a műveletek előtti és utáni eredményekből különbséget számol. Egyszerű következtetéssel, becsléssel nagy mennyiségű adatra/memóriaterületre számíthatunk, így érdemes megabájt mértékegységet használni.

Közös konstansok

  • final int MIN_LIMIT=(int)'a';
    97, a kis ‘a’ betű, a „legkisebb” generálható véletlen betű/karakter ASCII kódja
  • final int MAX_LIMIT=(int)'z';
    122, hasonlóan a felső korlát
  • final int STRING_LENGTH_LIMIT=20;
    a véletlenszerűen generálandó szövegek hossza
  • final int STRING_COUNT=1000000;
    a véletlenszerűen generálandó szövegek száma, amik generikus listába kerülnek

Három különböző módszer

  • method1():
    Az első módszer esetén String típusú szövegobjektumok keletkeznek úgy, hogy karakterenként kerülnek összefűzésre (konkatenáció) a += művelettel (operátorral). A véletlen karakterek sorszámaira int2char típuskényszerítés szükséges explicit módon (char). A vezérlés egymásba ágyazott ciklusokkal történik.
  • method2():
    A második módszer esetén StringBuilder típusú szövegobjektumok keletkeznek. Szintén karakterenként generálva. Összefűzésüket az append() metódus végzi el. A típuskényszerítés és a vezérlés megegyezik az előző módszerrel.
  • method3() :
    A harmadik módszer során a StringBuilder típusú szövegobjektumokból a Stream API beépített funkcionális műveletei állítják elő a generikus listát. A vezérlés egyetlen ciklusból áll.

Java forráskódok

Íme az első módszert megvalósító metódus. Futtatása 620 MB memóriát igényel:

Ez a második módszer metódusa, amely futása során 235 MB memóriát használ:

A harmadik módszer metódusa. 494 MB „memóriaterületbe kerül” lefuttatni:

A metódusok hívása

Eredmények

A tesztkörnyezet az alábbi eredményeket írta ki konzolosan:

Más nézőpontok

  • Az is mérhető, hogy a program futása közben hány darab objektum keletkezik, melyik mennyi ideig „él”, melyik mennyi helyet foglal. Ez részletesebb képet nyújthat, összevetve a fenti globális helyfoglalással.
  • Figyelhető, hogy az automatikus szemétgyűjtő (Garbage Collector) milyen gyakran fut. Némileg befolyásolható, paraméterezhető a tevékenysége.
  • A forráskód bonyolultsága összefüggésben van annak karbantarthatóságával. Fontos lehet, hogy milyen könnyen dokumentálható, továbbfejleszthető.
  • A memóriafogyasztás szempontjából „túloptimalizált” program verzióváltás(ok) esetén több tesztelést, módosítást igényelhet. Ha egyáltalán valaki hozzá mer nyúlni. 😉
  • A memóriahasználat mérése során figyelembe kell venni, hogy a Java programon kívül Java futtatókörnyezet (JRE) is működik az operációs rendszeren, aminek szintén van erőforrásigénye.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Bemutattunk többféle módszert, illetve teszteredményeket. Részletes magyarázatot/indoklást most nem adunk a szakmai blogban. A Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra Objektumorientált programozás alkalmain természetesen széles körű áttekintést adunk a témakörrel kapcsolatosan, valamint más módszereket is bemutatunk. A hatékonyság klasszikus dimenziói: időigény, tárigény, bonyolultság. Több esettanulmányunk is van, amely egy-egy algoritmus lépésszámát méri, memória- és/vagy sávszélesség igényt mér, illetve elvi és/vagy koncepcionális bonyolultságot próbál meghatározni. Ezek közül többször redukálunk, csökkentünk tipikusan lépésszámot, memóriaigényt.

Születésnap-paradoxon

Mennyi a valószínűsége, hogy n ember között van kettő, akiknek egy napon van a születésnapja? A meglepő a dologban az, hogy már 23 ember esetén a kérdéses valószínűség 1/2-nél nagyobb. Másképpen: már 23 ember esetén nagyobb annak az esélye, hogy megegyezik a születésnapjuk, mint az ellenkezőjének. Ez a 23 nagyon kevésnek tűnik. Ezért paradoxon.

Közismert néhány hétköznapi valószínűség. Íme néhány szabályos eset. A pénzfeldobás során 1/2 az esélye a fej és 1/2 az esélye az írás eredménynek (másképpen 50%-50%, azaz fifty-fifty). A kockadobás esetén 1/6 az esélye bármelyik számnak 1-től 6-ig. Két kocka esetén blogoltam már a dobott számok összegének alakulásáról, eloszlásáról: Kockadobás kliens-szerver alkalmazás.

Néhány egyszerűsítés

  • Az év 365 napból áll. Nem számítanak a 366 napos szökőévek.
  • A születések eloszlása egyenletes, azaz minden nap körülbelül ugyanannyian születnek. Nem számít, hogy hétköznap, hétvége, ünnepnap. Az áramszüneti városi legendák sem.
  • Nem vesszük figyelembe az azonos napon született ikreket. Persze ikrek születhetnek különböző napokon is.

Azonos születésnap valószínűsége grafikonon

Lássuk, hogyan alakul az azonos születésnap valószínűsége az emberek számától függően! Grafikonon ábrázolva:

A fenti grafikonhoz szükséges adatok könnyen előállíthatók az alábbi Java forráskóddal:

A fenti Google Chart típusú szórásgrafikon (Scatter Chart, korrelációs diagram) megjelenítéséhez adatpárok sorozata szükséges. Ezek a konkrétumok (70 db adatpár), görgethető:

Hasonló grafikon készítéséről szintén blogoltam már: Céline Dion – Courage World Tour.

Párok előállítása

Az emberek születésnapjainak összehasonlítása párokban történik. 23 ember esetén 23*22/2=253 pár van. Általános esetben n ember esetén (n*(n-1))/2 pár adódik. A levezetés részletei a források között megtalálható. 59 ember esetén 1711 pár adódik és szinte garantált az előforduló azonos születésnap, hiszen már 0,99 ennek a valószínűsége.

Az alábbi Java forráskód – rekurzív módon – előállítja a 23 konkrét esetre a párokat, az embereket 1-23-ig sorszámozva. Kombinációk:

A main() metódusban az i változó paraméterezhető és a konkrét eset könnyen intervallumra változtatható. Eredményül ezt írja ki a program a konzolra, görgethető:

Kísérleti ellenőrzés

Tekintsünk például 1000 esetet! Készítsünk Java programot, amely 23 db véletlen születésnapot generál! Legyen ez a születésnap sorszáma az évben (másképpen hányadik napon született az ember az évben). Ez lényegesen egyszerűsíti a megoldást, összevetve a dátumkezelésen alapuló megközelítéssel. Ajánljuk a szakmai blog dátumkezelés címkéjét az érdeklődőknek, ahol megtalálhatók a témához kapcsolódó Java forráskódrészletek részletes magyarázatokkal kiegészítve. Íme a többféle generikus listát és programozási tételt használó forráskód:

Érdemes elemezni, tesztelni a fenti forráskódot: milyen lépésekben, milyen adatszerkezeteket épít. Hasznos lehet lambda kifejezésekkel kiegészíteni, módosítani a programot. Részlet a program szöveges eredményéből:

A 12. sorban lévő számhármasok jelentése: esetszám 1-től, azonos nap, előfordulás száma. Például: a kísérlet során a 8. esetben az év 225. napja azonos 3 embernél. Természetesen nincs garancia arra, hogy az 1000 eset vizsgálatánál mindig 500-nál nagyobb kedvező esetet kapunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra Objektumorientált programozás alkalmaihoz kötődik.

Források