Egy matematika érettségi feladat megoldása programozással 2023

érettségi logó

érettségi logó

A 2023-as középszintű matematika érettségi feladatsorból az 5. feladat alkalmasnak bizonyult arra, hogy a programozás eszköztárával oldjuk meg. Rögtön többféleképpen is, hogy összehasonlíthatóak legyenek egymással. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor letölthető az oktatas.hu-ról.

5. feladat

Adja meg a 420 és az 504 legnagyobb közös osztóját! Megoldását részletezze!

Íme kulcsszavakban, mit érdemes átgondolni a megoldás előtt: számelmélet alaptétele, prímfelbontás (prímtényezős felbontás, faktorizáció), osztópár, prímek szorzata, prímtényezők szorzata, kanonikus alak, euklideszi algoritmus.

1. megoldás

Az első megoldás az euklideszi algoritmus alkalmazása. A metódus paraméterezhető. Pozitív paramétereket vár és képes kiírni a konzolra a két szám legnagyobb közös osztóját. A módszer alapötlete: a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. Ezzel csökken a nagyobb szám, így a cserék ismétlésével egyre kisebb számokat kapunk, amíg a két szám egyenlővé nem válik. Ez az eddigi számpároknak, így az eredeti számpárnak is a legnagyobb közös osztója. Az eredményt az utolsó nem nulla maradék while(m!=0) adja meg int lnko=b;. Az algoritmus lépésszáma csökkenthető, ha a>b, de ennek ellenőrzése nélkül is működik. Mivel a feladat kéri a megoldás részletezését, így aktiválva a megjegyzésbe tett forráskódokat, a kiírásból könnyen érthető, mi és hogyan történik:

A konkrét esetben a metódus eredménye: lnko (420; 504) = 84. Nagyobb számok esetében „beszédesebb” a program kiírása, több lépésben írja ki a megoldáshoz vezető utat, ezért érdemes többféle paraméterrel is tesztelni a metódust.

2. megoldás

A második megoldás a prímtényezős felbontásokon alapul. Mindkét szám esetén gyűjtsük össze listában ezeket, majd vegyük a két lista közös részét. (Ha lista helyett halmazok lennének, akkor metszet programozási tétel lenne.) A generikus listákba prímszámok kerülnek és bármelyik többször is előfordulhat. (Ezért most a leghosszabb közös részsorozat(ok) előállítása szükséges.) Addig osztjuk a számot 2-vel, amíg lehet, utána következik a többi prímosztó, amíg vannak. Érdemes több metódusra szétosztani a megoldást, mert jóval áttekinthetőbb és karbantarthatóbb Java forráskódot eredményez. A beszédes változó, objektum és metódusnevek is segítenek a megértésben. A második megoldás természetesen ugyanazt az eredményt adja, mint az első megoldás. Aktiválva a megjegyzésbe tett forráskódokat, a kiírásból most is könnyen érthetővé válik (középiskolás matematikaóra-szerűen), mi és hogyan történik:

Kanonikus alakban: 420 = 22 * 3 * 5 * 7, 504 = 23 * 32 * 7, így lnko (420; 504) = 22 * 3 * 7. Azaz összeszorozzuk a közös prímtényezőket az előforduló legkisebb hatványon.
A megoldás erősen épít a generikus kollekciók esetén jól használható Stream API lambda kifejezéseire. Ezeket most nem részletezem, helyette ajánlom a szakmai blogból a lambda kifejezés címkét.

Érdemes átgondolni

  • Nagy prímszámok esetén az euklideszi algoritmus nem hatékony. Az algoritmus végrehajtása kifejezetten lassú például a Fibonacci-számok esetén. A prímtényezőkre bontás feltételezett bonyolultságát számos kriptográfiai algoritmus használja ki. Vannak különleges esetek is, például: egyforma számok, az egyik szám 1, a két szám egymás többszöröse.
  • A feladat nem kérte a legkisebb közös többszörös meghatározását, de ha tudjuk a lnko(a, b)-t, akkor abból könnyen adódik a lkkt(a, b)=a*b/lnko(a, b).
  • A legnagyobb közös osztó tulajdonságait megismerve az euklideszi algoritmus könnyen optimalizálható. Számos esetben ellenőrzést végezhetünk, illetve triviális alapesetek is vannak. Létezik kiterjesztett euklideszi algoritmus is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 9-12. óra: Metódusok, rekurzió, valamint 17-28. óra: Objektumorientált programozás alkalmaihoz kötődik.

Fibonacci-sorozat

Fibonacci logó

Fibonacci logóMa van (november 23.) a Fibonacci nap (újra). Fibonacci középkori matematikus volt, ő tette közismertté a Fibonacci-sorozat-ot. A (0), 1, 1, 2, 3, 5, 8, 13, 21, 34, sorozat igen népszerű azok közében is, akik programozást tanulnak. A sorozat első két eleme 1 és 1 (ha szükséges, akkor nulladik elemmel is dolgozhatunk), és minden további elem az előző két elem összege.

Korábban is blogoltak a kollégáim a témában:

Következzen most az én öt különböző megoldásom Java forráskódja, rövid magyarázattal. Mindegyik a Fibonacci-sorozat első tíz elemét állítja elő.

1. megoldás

Az első megoldás generikus listát épít. Az első két elemet elhelyezi a lista elején ( list.add(1)). Ezek a lista nulladik és első elemei lesznek. Ezután a metódus a maradék 8 elemmel 2-től n-1-ig fiktív indexként hivatkozva az előző két elem összegeként ( list.get(i-1)+list.get(i-2)) index nélkül bővíti a listát.

2. megoldás

A második megoldás a tipikusan nem hatékony rekurzív módszert implementálja. A rekurzív fib() függvény a sorozat egyetlen elemét adja vissza, amit (a függvényt) a ciklus sokszor meghív ahelyett, hogy a ciklus vagy a rekurzió „emlékezne” az előző elemekre.

3. megoldás

A harmadik megoldás funkcionális nyelvi elemeket (Stream API) használ. A folyamba kétdimenziós tömbre történő hivatkozással ( f-> new int[] ), közvetlen hozzárendeléssel/leképezéssel ( map()), kerülnek be a sorozat elemei.

4. megoldás

A negyedik megoldás a Fibonacci-számok zárt alakját használja. Másképpen ez a Binet-formula:

Ezzel a képlettel a sorozat elemei közvetlenül megadhatók, azaz nem szükséges más elemekre való hivatkozás. A ciklus adja meg, hogy a sorozat 1-10-ig indexelt elemei szükségesek.

5. megoldás

Az ötödik megoldás szintén Stream API-t használ. Először előállít egy sorozatot 1-10-ig, amiket a leképezésnél ( map()) inputként használ és alkalmazza rájuk a Binet-formulát. Hagyományos ciklus utasítás nem szükséges.

Eredmény

Mindegyik megoldás a konzolra írja szövegesen az eredményt, azaz a Fibonacci-sorozat első tíz elemét: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. Érdemes elemezni a hatékonyság klasszikus három szempontja (időigény/lépésszám, tárigény, bonyolultság) alapján a különböző megoldásokat. Ezek mérésével könnyen kiegészíthetők a fenti metódusok, vagy az azokat meghívó osztályban a vezérlés.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió és 17-28. óra Objektumorientált programozás alkalmaihoz kötődik.

Kutatók éjszakája 2022

Kutatók éjszakája logó

Kutatók éjszakája logóA Kutatók éjszakája nemzetközi rendezvénysorozat 2005-ben indult. Magyarország 2006-ban csatlakozott. Azóta évről-évre egyre több intézmény nyitja meg hazánkban kapuit, szervez érdekes programokat, sok-sok településen, több száz helyszínen, több ezer eseményt meghirdetve sok tízezer érdeklődő/résztvevő látogatónak biztosít tartalmas estét.

Bár a kezdeményezés elsősorban a kutatói pálya népszerűsítését szolgálja, ezért leginkább a tizen- és huszonévesekre számít, az események vonzók és elég érdekesek ahhoz, hogy a kisgyerekektől a legidősebbekig mindenki megtalálja a számára izgalmas programokat. Korábban nagyobb felsőoktatási intézmények és kutatóintézetek szerepeltek döntően, de az utóbbi néhány évben egyre több kisebb intézmény, tehetséggondozással foglalkozó középiskola, cég, egyesület is csatlakozott a rendezvényhez. A Kutatók éjszakája rendezvény minden meghirdetett programja ingyenes.

Rendezvényünk plakátja

Az it-tanfolyam.hu 2022-ben is hirdetett programokat az eseményhez kötődően. Programjainkat elsődlegesen követőinknek, aktív hallgatóinknak és az alumni csoportunkban hirdettük meg, de persze nyílt rendezvényként valósult meg. Az eseményekre regisztrálni kellett a weblapon. A regisztrációs időszak két hétig tartott, szeptember 16-29-ig. Programjainkra szeptember 30-án 21:00-23:55-ig került sor.

21:00-21:35 – Kiss Balázs: Mi az ipar 4.0? Mi az okos gyár?
Az előadó évek óta foglalkozik okos architektúrák fejlődésének történetével, koncepciójával, szoftveres integrációjával és konfigurációjával. Szívesen osztja meg gondolatait, kutatási eredményeit a témáról, beszél saját kisebb és nagyobb léptékű okos projektjeiről. Praktikus tanácsok is előkerülhetnek – igény szerint. Egyensúlyoz a kész komponensek testre szabási lehetőségei és a saját fejlesztés határán. Utóbbi kulcsszavai: hálózati kommunikáció megvalósítása szerver-kliens között vagy peer-to-peer többféle programozási nyelven, autentikáció, autorizáció, protokoll, tömörítés, felhő architektúrák, robotika, robotprogramozás. Az előadó ismerteti az Európai Parlament 2016-os állásfoglalásából kiindulva, hogy milyen mérföldkövek voltak és jelenleg hol tartunk az ipar 4.0 és az okos gyárak tekintetében és mi várható a közeljövőben. A program a Java tanfolyamaink orientáló moduljához kötődik.

21:40-22:15 – Kaczur Sándor: Algoritmus vesebeteg-donorok párosítására
Hogyan működik 2007 óta Nagy-Britanniában a vesebeteg-donorok párosítása? Sima csere 2 pár esetén adódik. 3 pár esetén körbeadják a vesét egymásnak – ez már jóval összetettebb probléma. A felépített óriási adatbázisban akár több száz lehetőség is adódhat. A probléma megfelelő párosítási algoritmus és számítógép nélkül, pusztán emberi erővel megoldhatatlan lenne. Az implementált algoritmus futási ideje mindössze 30 perc. A párosítást követően a következő lépés a műtétek egyidejűsége, és a donor szervek „utaztatása” minden lehetséges úton – földön, vízen, levegőben –, minden lehetséges közlekedési eszközzel. Hogyan működik mindez a gyakorlatban? Milyen korlátok, problémák vannak? Milyen adatok alapján dönthető el a betegek „kompatibilitása”? Ezek közül mi kapcsolódik az egészségügyhöz és mi a szállításhoz? Az előadó próbál válaszokat adni, de lehet, hogy a végén több lesz a kérdés, mint a válasz. Vajon egyáltalán felmerül a párosítási algoritmus hatékonysága ekkora társadalmi hasznosság mellett? A program a Java tanfolyamaink orientáló moduljához kötődik.

22:20-22:55 – Hollós Gábor: Objektumorientált programozás vs. funkcionális programozás Java nyelven
Az előadó ismert adatszerkezeteket és ismert programozási tételeket használva összehasonlítja a hatékonyság szempontjai alapján egy-egy feladat különböző megvalósításait. Referenciaként tekint az objektumorientált megoldásokra és ehhez képest kiderül, hogy a Java 8-tól elérhető funkcionális elemek milyen változásokat jelenthetnek. Vajon kevesebb memóriát használnak? Gyorsabbak? Egyszerűbbek/bonyolultabbak? Könnyebben megérthetőek, karbantarthatóak, dokumentálhatóak? Hogyan érdemes egyensúlyozni az általunk leprogramozott, a kollekciók hagyományos beépített műveleteit használó és a lambda kifejezések között? Kiderül. A program a Java SE szoftverfejlesztő tanfolyamunk tematikájához kötődik.

23:00-23:25 – Németh András, Tóth-Szabó Tamás: Karrierváltás után – néhány hónap KKV-s tapasztalatai szoftverfejlesztőként
Mennyire könnyű ma szoftverfejlesztőként elhelyezkedni szakirányú felsőfokú végzettség nélkül? Milyen kihívásokkal találkozhatunk a felvételi folyamat során? Milyen elvárásokat támasztanak a munkaadók egy junior szakemberrel szemben? Hogyan telnek a beilleszkedés után a hétköznapok junior fejlesztőként kis létszámmal működő informatikai profilú kisvállalkozásnál? A tanfolyamainkon 2020-ban és 2021-ben végzett előadók karrierváltó junior szakemberként személyes tapasztalataikról számolnak be és válaszolnak a kérdésekre. A program a Java tanfolyamaink orientáló moduljához kötődik.

23:30-23:55 – Szegedi Kristóf: Gondolkodjunk logikusan!
Az előadás során áttekintjük az intelligencia, a kreatív problémamegoldó és logikus gondolkodás összefüggéseit és izgalmas feladatokból válogatva közösen megoldunk néhány fejtörő feladatot. Néhány példa: Hány éves a kapitány?CHOO + CHOO = TRAIN, Logikus gondolkodás teszt. Minden feladathoz adunk rávezető példákat – ha esetleg egyik-másik nem menne, akkor ebből ki fog derülni, hogy miket érdemes gyakorolni ahhoz, hogy sikerüljön.

 

A programjaink népszerűek voltak. Közel 40 érdeklődő látogatót fogadtunk. Többségükben végig velünk tartottak. Néhányan kifejezetten egy-egy adott program iránt érdeklődtek és már késő délutántól úton voltak kora hajnalig. Megragadták a lehetőséget, hogy több budapesti helyszínt is meglátogassanak – ahogyan ez megszokott a Kutatók éjszakája rendezvényeken hosszú évek óta. Kellemes hangulatban, tartalmasan töltöttük együtt az időt, aminek igazán örülök.

Szeretném megköszönni az előadó kollégák és alumni hallgatóink színvonalas munkáját, igényes felkészülését. Köszönjük mindenkinek, aki részt vett a Kutatók éjszakája 2022 rendezvényünkön. Az aktív kérdező csapatot külön is kiemelem. Az előadások prezentációit tanfolyamaink hallgatói számára – a témához kapcsolódó témakörökhöz, ILIAS-ra feltöltve – tesszük elérhetővé.

Egy matematika érettségi feladat megoldása programozással 2022

érettségi logó

érettségi logóA 2022-es középszintű matematika érettségi feladatsor eléggé egyszerű volt, de azért a 6. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá a megszámolás programozási tétel. Többféle megoldás/megközelítés (iteratív és rekurzív) is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

6. feladat

Egy feleletválasztós teszt 5 kérdésből áll, minden kérdésnél négy válaszlehetőség van. Hányféleképpen lehet az 5 kérdésből álló tesztet kitölteni, ha minden kérdésnél egy választ kell megjelölni?

1. megoldás

Rögtön tudjuk, hogy ez kombinatorika, n elem k-ad osztályú ismétléses variációja, amelynek paraméterei: n=4, k=5. A hatványozás azonosságainak ismeretében fejből is tudjuk a megoldást: 45=210=1024. A Java forráskód elvégzi a hatványozást. A Math.pow() függvény általánosabb, mint amire most szükségünk van. Fogad double valós paramétereket és double típusú értékkel tér vissza. Ezért hasznos az (int) explicit típuskényszerítés.

Másképpen: négy elemű halmazból öt elemet kiválasztunk és ezeket sorba rendezzük (permutáljuk) és egy elemet egy csoportban akár ötször is felhasználhatunk. Számít a sorrend. A lehetséges variációk száma: 1024.

2. megoldás

Ha hasznos lenne egy általános metódus az ismétléses variáció kiszámítására, akkor ez egy tipikus megoldás lehet erre. Kiegészítendő még a két paraméter előjelének ellenőrzésével.

3. megoldás

Ha a megértést segíti, akkor a teljes leszámolás (brute force) módszerével, egymásba ágyazott ciklusokkal könnyen kiírathatjuk a konzolra az 1024 db különböző válaszlehetőséget. A k-val kezdődő sorszámozott ciklusváltozók jelölik az öt kérdést, azon belül az 'a'-tól 'd'-ig karakterek adják a válaszlehetőségeket. Eredményül ezt kapjuk (görgethető):

4. megoldás

Ha csak a végeredmény szükséges, akkor ez az iteratív megoldás a megszámolás programozási tétellel előállítja azt.

5. megoldás

Ez egy rekurzív megoldás. Ciklus helyett a metódus önmagát hívja meg, így valósul meg az ismételt utasításvégrehajtás. A válaszlehetőségek összefűzésével (konkatenáció) előállított válasz akkor megfelelő, ha annak hossza öt. Ez esetben kiíródik a válaszlehetőség a konzolra (mintegy mellékhatásként). Ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

6. megoldás

Szintén, ha csak a végeredmény szükséges, akkor ez a mellékhatással rendelkező rekurzív metódus előállítja azt. A mellékhatás most az, hogy a metódus eljárás és nem függvény és szükséges hozzá a db osztályváltozó (ami a metódushoz képest globálisnak is tekinthető).

7. megoldás

Ez a megoldás a válaszlehetőségeket megfelelteti n alapú számrendszerben k számjegyből álló számoknak. A kétdimenziós tömbben számokat tárol, így:

  • 1,…,1,1 → 0…0000
  • 1,…,1,2 → 0…0001
  • 1,…,1,n → 0…001(n1)
  • 1,…,2,n → 0…001(n1)
  • n,…,n,n → (n1)...(n1)

Végül a kiíró ciklus ezeket a számokat karakterekké alakítja ( 'a' ASCII kódja 97) és fordított sorrendben írja ki, hogy ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

Továbbfejlesztési lehetőségek

  • A 2. megoldáshoz: teszteljük le a lehetséges túlcsordulást és az int típus helyett szükség esetén használjunk long típust!
  • A 3. megoldáshoz: építsünk kétdimenziós tömb adatszerkezetet, amiből később az i-edik válaszlehetőség megadható!
  • Előzőhöz: állítsuk elő lexikografikus sorrendben az i-edik válaszlehetőséget adatszerkezet felépítése nélkül!
  • A 6. megoldáshoz: valósítsuk meg a rekurzív gondolatmenetet mellékhatás nélkül!
  • Teszteljünk: mennyi idő alatt hajtódik végre a 4. és a 6. megoldás? Mekkora paraméterekkel érzékelhető, hogy a rekurzió jóval lassabban fut?
  • A 7. megoldáshoz: cseréljük le az egésztömb adatszerkezetet karaktertömbre!

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, valamint 21-24. óra: Objektumorientált programozás 1. rész alkalmaihoz kötődik.

Ratkó István emlékest 2022

A Gábor Dénes Főiskolán működő Ratkó István matematika interdiszciplináris alkalmazásai Műhely 2022. március 25-én 10. alkalommal rendezte meg a Ratkó István emlékestet. Ezen már többször is részt vettem előadóként és a hallgatóság tagjaként is. 2014-ben Prímszámkereső algoritmusok hatékonysága címmel, 2015-ben A bűvös négyzet története és előállítása (oktatóprogram) címmel tartottam előadást. A jubileumi emlékesten pedig „Töltsünk ki az ötöslottón 100 szelvényt úgy, hogy valamelyik szelvénnyel biztosan legyen két találatunk!” – a feladat megoldásához vezető út címmel tartottam előadást.

A blog bejegyzésben röviden összefoglalom az előadást:

  • Személyes élmények Ratkó tanár úrhoz kötődően
  • Ötöslottó: diszkrét matematika, elemi kombinatorikai feladat, lehetséges különböző szelvények száma, öttalálatos valószínűsége, szemléltetés
  • Véletlenszámok előállítása: valódi és ál (pszeudo) véletlenszámok, hardveres és szoftveres megoldások áttekintése, LCG
  • Egyetlen véletlenszám előállítása Java nyelven: procedurális, OO, szálbiztos megoldások
  • Egyetlen lottószelvény előállítása Java nyelven: adatszerkezet nélkül, logikai tömb (demóprogram), számtömb, szöveg (McMillan egyenlőtlenség, optimális kód, Huffman kód, prefixmentes kódolás, Shannon-Fano kód, hibajelző és hibajavító kód, Hamming távolság, Reed-Solomon kód, algebra: véges testek megkonstruálása), generikus lista (érték), generikus lista (keverés), generikus lista (elfogyasztás), generikus halmaz, funkcionális programozás / algoritmusok és adatszerkezetek rövid elemzése, összehasonlítása, kompromisszumok
  • Találatok száma: matematika vs. programozási tételek, metszet tömbbel és generikus listával, Stream API-val, lambda kifejezéssel
  • Különböző lottószelvények előállítása: összes eset, brute force, mesterséges intelligencia, problématér|állapottér, kombinatorikai robbanás kontrollálása
    (szemléletváltás: az eddigi 1-90 intervallumból kiválasztott 5 különböző szám egy lottószelvényt jelentett, mostantól az 1-43949268 intervallumból kiválasztott különböző számok különböző lottószelvényeket jelentenek)

Eddig minden feldolgozható a középiskolás matematikai eszköztárral és kezdő Java objektumorientált programozás által biztosított mozgástérben. A továbbiakhoz szintet kell lépni.

A konkrét feladatspecifikáció:

„Töltsünk ki az ötöslottón 100 szelvényt úgy, hogy valamelyik szelvénnyel biztosan legyen két találatunk!” (Segítség: töltsünk ki 30 szelvényt úgy, hogy az 1-25 közötti számpárt lefedjék; 21 szelvényt úgy, hogy a 26-46 közötti összes számpárt lefedjék; 21 szelvényt úgy, hogy a 47-67 közötti összes számpárt lefedjék és 28 szelvényt úgy, hogy a 68-90 közötti összes számpárt lefedjék. Miért lesz így legalább két találatunk?)

A szintlépéshez hasznos ismerni két tankönyvet (Szilasi Zoltán: Bevezetés a véges geometriába, 2015; Reiman István: A geometria és határterületei, 2001) és egy tudományos cikket (Z. Füredi, G. J. Székely, Z. Zubor: On the Lottery Problem, 1995). További szükséges ismeretek (geometria, algebra, elemi matematika, kombinatorika): projektív geometria, véges projektív sík, Kirkman iskoláslány problémája, Fano-sík (mint algebrai és geometriai leképezés), Steiner-rendszer (ponthalmaz, amely elemszáma 6k+1 alakú prím), néhány konstruktív jellegű bizonyítás, skatulya-elv.

Az előadás a feladat megoldásához vezető útról szólt. Az eredmény előtti utolsó előtti lépés ezt jelenti (Java program konzolra kiírt szövege):

Végül ismertettem néhány lehetőséget az algoritmus vizsgálatára és az implementált Java forráskód tesztelésére.

Köszönöm Kupcsikné Fitus Ilona kolléganőnek, hogy a jubileumi Ratkó István emlékest szervezőjeként előadónak felkért. Örömmel csatlakoztam újra. A prezentációmat a résztvevőkkel megosztottam. Köszönöm az érdeklődő kollégáknak és hallgatóknak a részvételt és a pozitív visszajelzéseket. Az emlékestek programjai elérhetők. Ajánlom lottószelvény címkénket is, mert a téma igazi örökzöld.