Letöltés szimuláció

letöltés logó

letöltés logóLetöltési folyamatot szimulálunk. A paraméterek rugalmasan beállíthatóak. Előre beállított mennyiségű adatot, párhuzamos szálakon/folyamatokon keresztül töltünk le, miközben mérjük az eltelt időt. A folyamatok állapota lehet inaktív, aktív és befejezett. Az aktív folyamatok esetében megjelenő százalék fejezi ki, hogy a folyamat hol tart a rá jutó részfeladat végrehajtásával. Összesített formában követhetjük a hiányzó és a letöltött adat mennyiségét MB-onként és százalékosan is. A folyamat szimulációjához grafikus felületű Java kliensprogram készült, egyszerű GUI komponensekkel (nyomógomb, címke, folyamatindikátor, másképpen JButton, JLabel, JProgressBar swing komponensek).

Az alábbi animáció bemutatja a letöltés szimulációját:

letölés szimuláció

A konkrét paraméterek: 128 MB-nyi adatot töltünk le 256 párhuzamos szálon/folyamaton keresztül, így egy-egy részfeladat 0,5 MB-nyi adat letöltését jelenti. Minden értéket/mérőszámot egész számként ábrázolunk, akár százalékhoz tartozik, akár mértékegységként MB vagy s. A változások – és egyben a frissítés is – 5 ezredmásodpercként történnek a GUI-n.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni. A Java EE szoftverfejlesztő tanfolyamunkon, a szakmai modul 5-8. óra Szálkezelés, párhuzamosság alkalommal többféle elosztott stratégiát ismertetünk, és a 17-24. óra Socket és RMI alapú kommunikáció alkalommal pedig megvalósíthatjuk többféle protokoll szerint a hálózati kapcsolatot, letöltést/feltöltést.

Elosztott alkalmazások esetén többféleképpen is modellezhető és kialakítható a rendszer architektúrája. Elosztott lehet maga a hálózat, a számítási folyamat, az algoritmus. Elosztott objektumok kommunikálhatnak egyenrangúnak tekinthető P2P szerepkörben vagy szerver/kliens oldalon, és több dolog/elem/hardver/szoftver/komponens együttműködéseként is megvalósulhat elosztott alkalmazás. A hálózati kommunikáció folyamatát valamilyen protokoll határozza meg, amit minden komponens ismer és így meghatározott szabályrendszer szerint működik.

Hardver szinten elosztottak a többprocesszoros rendszerek. Szoftveresen elosztott például egy moduláris vállalatirányítási rendszer, illetve a mobilalkalmazások többsége. Tipikus háromrétegű webalkalmazás esetén külön szerver nyújtja az adatbázishoz kapcsolódó szolgáltatásokat, a felhasználó számítógépén található a böngészőben futó/megjelenő kliensprogram/weboldal és a kettő között a felhő rétegben lehet a funkcionálisan elosztott alkalmazáslogika (például validálás, titkosítás, tömörítés, autentikáció, autorizáció).

A feladat könnyen általánosítható, például:

  • Egy keresési feladatot oldjunk meg az állományrendszerben! Kereshetünk egy konkrét nevű fájlt, adott kiterjesztésű fájlt, joker karakterekkel paraméterezett nevű fájlt/mappát, adott méretű állományt, adott dátum előtt létrehozott fájlt… Az állományrendszer bejárása rekurzív módon történik. A gyökérben lévő mappánként külön, esetleg második szinten lévő mappánként külön indíthatók szálak, párhuzamos folyamatok. Ha egyetlen találat elegendő, akkor bármelyik szál pozitív visszajelzésére minden szál leállítható. A feladatnál nagy eséllyel nagyon különböző méretű mappákon és eltérő mélységű mappaszerkezeteken kell végighaladni, így erre érdemes lehet optimalizálni, de ez már nagyon más szintje ennek a problémának.
  • Active Directory szerkezetben keressünk elérhető nyomtatókat a hálózaton!
  • Elosztott számítási hálózatként működik/működött a SETI@home. Koncepciójának lényege, hogy egy hatalmas feladatot nem nagyon drága szuperszámítógépeken, hanem olcsó gépek ezrein, százezrein, vagy akár millióin végeztetjük el, amelyek jelentős szabad kapacitással (pl. processzoridővel, átmeneti tárhellyel) rendelkeznek és egyébként is csatlakoznak a világhálóra.
  • Hasonlóan elosztott működésű a torrent protokoll. A kliensek/szálak az állományokat több kisebb darabban/szeletben töltik le, természetesen párhuzamosítva. Minden csomópont megkeresi a hiányzó részhez a lehető leggyorsabb kapcsolatot, miközben saját maga is letöltésre kínálja fel a már letöltött fájldarabokat. A módszer nagyon jól beválik nagyméretű fájloknál, például videók esetében. Minél népszerűbb/keresettebb egy fájl, annál többen vesznek részt az elosztásában, ezáltal a letöltési folyamat gyorsabb, mintha mindenki egy központi szerverről töltené le ugyanazt (hiszen az informatikában minden korlátos, a sávszélesség is).
  • A képtömörítést végző algoritmusok is lehetnek elosztottak, ezáltal párhuzamosíthatóak. Például ha felosztjuk a képet 16*16-os méretű egymást nem átfedő részekre, akkor ezek egymástól függetlenül tömöríthetők.
  • A merevlemezek esetén korábban használatos defragmentáló szoftverek felhasználói felülete emlékeztet a mintafeladat ablakára.

Fontos szem előtt tartani, hogy a grafikus megjelenítés csupán a szimulációhoz tartozó – annak megértéséhez szükséges – reprezentáció, így teljesen független lehet a folyamatok valós működésétől.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Télapó probléma

Télapó-probléma

Télapó-problémaAz operációs rendszerek tervezésének fontos része az ütemezési, erőforrás- és szálkezelési feladatok problémamentes, holtpontmentes megoldása, szinkronizálása, amiről sok ismert szerző publikált már, néhányan közülük angol nyelven: W. Stallings, A. B. Downey, A. S. Tanenbaum, A. S. Woodhull., és magyarul is: Galambos Gábor, Knapp Gábor és Adamis Gusztáv. Ehhez a szakterülethez tartozik több népszerű probléma/esettanulmány, például a vacsorázó bölcsek problémája, illetve a Santa Claus Problem, vagyis a Télapó probléma.

A Télapó probléma specifikációját és megoldását a konkurens programozás eszközeire építve J. A. Trono készítette el (szemaforokkal), amire építve is – és kritizálva is azt – több Java implementáció is elkészült (például: P. Steiner), valamint több programozási nyelv szálkezelési lehetőségeinek összehasonlításáról is publikált J. Hurt és J. B. Pedersen és kliens-szerver elosztott környezetben is áttekintette a lehetőségeket D. Marchant és J. Kerridge. Ismert Haskell, Erlang, Polyphonic C# implementáció is.

A Télapó probléma meghatározása

A Télapó alszik az északi-sarki boltjában és csak akkor ébredhet fel, ha mind a 9 rénszarvas visszatér a dél-csendes-óceáni trópusi szigetén töltött rendes évi nyaralásukról, illetve ha akad néhány manó, akiknek nehézségei vannak az ajándékkészítés során. A 10 manó közül 1 manó problémája nem elég komoly ahhoz, hogy felébressze a Télapót (egyébként sosem aludna), így 3 manó megy egyszerre a Télapóhoz. Amikor a 3 manó problémáit közösen megoldották, akkor mind a 3 manónak vissza kell térnie a többi manóhoz, mielőtt egy újabb manólátogatás megtörténne. Ha a Télapó úgy ébred, hogy 3 manó várja őt a bolt ajtajánál és az utolsó rénszarvas is visszatért a trópusokról, akkor a Télapónak fontosabb, hogy olyan gyorsan elinduljon a szánnal, amilyen gyorsan csak lehetséges – így a manóknak várniuk kell karácsony utánig. Feltételezzük, hogy a rénszarvasok nem akarják elhagyni a trópusokat, ezért az utolsó pillanatig maradnak, amíg csak lehetséges. Lehet, hogy egyáltalán nem is jönnének vissza, ameddig a Télapó fizeti a számlát a paradicsomban… Ez is megmagyarázhatja az ajándékok kiszállításának gyorsaságát, hiszen a rénszarvasok alig várják, hogy visszatérhessenek oda, ahol meleg van. Az utolsóként érkező rénszarvas büntetést kap a Télapótól, mialatt a többi rénszarvas a meleg kunyhóban várja, hogy befogják őket a szán elé.

A Télapó probléma – egyik – megoldása

Találtam egy kb. 10 perces kiváló YouTube videót/animációt (The Santa Claus Problem Thread Synchronization), amely lépésenként felépíti a feladatot, érzékelteti a közben felmerülő problémákat, és megoldást is mutat. Ezt ajánlom december 6-án minden érdeklődő figyelmébe:

Megjegyzés: a videót nem mi készítettük. 2017-től 2020-ig az eredeti linkről ágyaztuk be a blog bejegyzésbe a videót. 2020-ban a videót az eredeti linkről (https://www.youtube.com/watch?v=pqO6tKN2lc4) eltávolították. A blog bejegyzésbe jelenleg beágyazott videó a 2017-es mentett változat.

A feladatot részletekbe menően és komplex módon gondolkodva kell megtervezni, és implementációi komoly nyelvi eszköztárat igényelnek. Érdemes P. Steiner Java megoldását részletesen átnézni, újragondolva – újabb nyelvi eszköztárral – implementálni.

A feladat a Java EE szoftverfejlesztő tanfolyam 1-4. óra: Elosztott alkalmazások, webszolgáltatások, illetve 5-8. óra: Szálkezelés, párhuzamosság alkalmaihoz kapcsolódik.