A Pi grafikus ábrázolása

A nemzetközi Pi nap alkalmából (március 14) Java programmal grafikusan ábrázoljuk a π számjegyeit. Kiindulunk egy négyzet alakú grafikus felület középpontjából. Ezt tekintjük origónak. Sorra vesszük a π első néhány számjegyét: 100, 1000, 10000 paraméterezhető módon. Minden számjegyet egy rövid szakasszal ábrázolunk. A szakaszok egymást követik. Az előző végpontja megegyezik a következő kezdőpontjával. A rajzolás elejét és végét kör jelzi.

Tervezés

Az alábbi szabály alapján döntjük el, hogy a π előforduló számjegyei esetén melyik irányba és milyen színnel rajzolunk szakaszt:

A π első 100000 db számjegyét tároljuk egy szövegfájlban. Ömlesztve, sortörés, tizedesvessző nélkül. Így a π első 30 számjegye: 314159265358979323846264338327. A szövegfájl helyét a String PI_FILE  konstans jegyzi meg. A paraméternek megfelelően ebből vesszük az első N db számjegyet. Ezt a Java program beolvassa egy String típusú pi szövegobjektumba. A számjegyek összetartozó adatait egy Digit osztály rendeli egymáshoz. Ennek három adattagja van: melyik számjegy: int digit, melyik irányba kell szakaszt rajzolni java.awt.Point direction, milyen színnel kell szakaszt rajzolni java.awt.Color color. A tízféle színt egy konstans tömb tárolja: Color[] COLORS.

Részletek a Java forráskódból

A π tízféle számjegyéből az alábbi forráskód-részlettel létrejön egy tömb adatszerkezet: Digit[] digits. A koordináták/vektorok kiszámítása követi az analóg óra számlapjának 36 fokonként való felosztását.

A rajzoláshoz szükséges még néhány konstans: milyen vastag vonalat kell rajzolni: double PEN_RADIUS, mekkora átmérőjű kör jelzi a rajzolás kezdő- és végpontját: double POINT_RADIUS, milyen hosszú vonalat kell rajzolni: int LINE_LENGTH, a rajzterületet mekkorára kell méretezni/skálázni: int SCALE.

Mindezek alapján az alábbi forráskód-részlet vizualizálja a π számjegyeit:

Eredmény

Eredményül ezek az ábrák készíthetők el:

A rajzoláshoz felhasználtuk az StdDraw osztályt, amely ennek a tankönyvnek a példatárából származik: Robert Sedgewick, Kevin Wayne: Computer Science: An Interdisciplinary Approach, 1st edition, Princeton University, Addison-Wesley Professional, 2016, ISBN 978-0134076423. Az osztály metódusaival könnyen beállítható a nézőpont, a vízszintes/függőleges skála, a rajzoláshoz használt toll mérete/színe és a grafikai primitívek közül csak a kör és szakasz ábrázolása szükséges.

Korábban is megemlékeztünk néhány közelítő algoritmus – Viète-féle sor, Leibniz-féle sor, Wallis-formula, Csebisev-sor – implementálásával erről az ünnepnapról: Nemzetközi Pi nap. Ajánljuk korábbi blog bejegyzéseinket rajzolás, animáció, grafika címkékkel, illetve ASCII művészet Java-ban.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, 17-28. óra: Objektumorientált programozás, 29-36. óra: Grafikus felhasználói felület, 37-44. óra: Fájlkezelés alkalmaihoz kötődik.

Szívgörbe ábrázolása

Szívgörbét ábrázolunk Java programmal. A Valentin-nap inspirálta ezt a feladatot. Számos matematikai görbe ismert, amelyek szívformához (kardioid) hasonlítanak. Szükséges egy megfelelő paraméteres görbe. A függvény szív formájú ábrája/grafikonja és egyenletrendszere alapján is nagy a választék.

Ábrázoljuk ezt a paraméteres szívgörbét Java swing GUI felületen!

A szívgörbe ábrázolásához felhasználom az StdDraw osztályt, amely ennek a tankönyvnek a példatárából származik: Robert Sedgewick, Kevin Wayne: Computer Science: An Interdisciplinary Approach, 1st edition, Princeton University, Addison-Wesley Professional, 2016, ISBN 978-0134076423. Az osztály metódusaival könnyen beállítható a nézőpont, a vízszintes/függőleges skála, a rajzoláshoz használt toll mérete/színe és a grafikai primitívek közül csak a pont ábrázolása szükséges.

Négy megoldást mutatok. Mindegyik azonos szívgörbét rajzol a fenti egyenletrendszer alapján. Mindegyik metódus átveszi az N paramétert, amely az összetartozó x és y koordinátapárok számát jelenti. Az N db pont meghatározása/kiszámolása szükséges a szívgörbe ábrázolásához. A szívgörbe ábrázolása önálló ablakban – grafikus felhasználói felületen – jelenik meg. A feladat matematikai jellegéből adódik, hogy tipikus a t nevű ciklusváltozó használata. A metódusokat a vezérlés az 512 paraméterrel hívja meg.

1. megoldás

A heartCurveDraw1() metódus a kiszámolt x és y koordinátákat két párhuzamos, double típusú tömb adatszerkezetben tárolja. A két tömbbe összesen 2*N db double típusú szám kerül. Azonos index jelöli az összetartozó koordinátapárokat. Az egymást követő két ciklus közül az első előállítja az adatszerkezetet és a második megjeleníti a pontokat.

2. megoldás

A heartCurveDraw2() metódus a párhuzamos tömbök helyett adatszerkezetként egyetlen tömböt használ. A java.awt.geom csomag Point2D osztályú objektumai kerülnek a tömbbe. Mivel a Point2D absztrakt osztály, így a Double() osztálymetódusával (factory method) példányosítható úgy, hogy a szükséges koordinátapárokat megfelelően tudja tárolni. A tömbbe N db objektum kerül.

3. megoldás

A heartCurveDraw3() metódus nem használ tömb adatszerkezetet. Tehát nem emlékszik az összes pont koordinátájára. Ehelyett a ciklus röptében, egyesével létrehozza a pontobjektumokat és azonnal ki is rajzolja azokat (átmeneti az emlékezet).

4. megoldás

A heartCurveDraw4() metódus Stream API-t és lambda kifejezéseket használ. Az első N természetes számból készül egy sorozat, amihez röptében hozzákötődik a t-edik Point2D típusú objektum. Ezzel létrejön egy folyam adatszerkezet. Tehát van egy pillanat, amíg a program emlékszik az összes folyambeli pontobjektumra. Végül a folyam feldolgozása, bejárása során egyesével megszólítva a folyam objektumait, a pontok kirajzolódnak a vászonra.

A vezérlés

Az eredmény

A szívgörbe önálló – swing, grafikus felhasználói felület, GUI – ablakban így jelenik meg:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat – a matematikai háttértől eltekintve – a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, valamint a 29-36. Grafikus felhasználói felület alkalmaihoz kötődik.

A 2D szívforma egyenletrendszerét erről a weboldalról választottam: Heart Curve – from Wolfram MathWorld. Egy merész továbbfejlesztési ötlet: a haladóknak megtalálható a 3D szívforma ábrázolása is: Heart Surface – from Wolfram MathWorld.

Sándor is blogolt már a Valentin-nap témában: Rómeó és Júlia. Ebből kiderül, hogy vajon ki szereti jobban a másikat: Rómeó vagy Júlia.

Születésnap-paradoxon

Mennyi a valószínűsége, hogy n ember között van kettő, akiknek egy napon van a születésnapja? A meglepő a dologban az, hogy már 23 ember esetén a kérdéses valószínűség 1/2-nél nagyobb. Másképpen: már 23 ember esetén nagyobb annak az esélye, hogy megegyezik a születésnapjuk, mint az ellenkezőjének. Ez a 23 nagyon kevésnek tűnik. Ezért paradoxon.

Közismert néhány hétköznapi valószínűség. Íme néhány szabályos eset. A pénzfeldobás során 1/2 az esélye a fej és 1/2 az esélye az írás eredménynek (másképpen 50%-50%, azaz fifty-fifty). A kockadobás esetén 1/6 az esélye bármelyik számnak 1-től 6-ig. Két kocka esetén blogoltam már a dobott számok összegének alakulásáról, eloszlásáról: Kockadobás kliens-szerver alkalmazás.

Néhány egyszerűsítés

  • Az év 365 napból áll. Nem számítanak a 366 napos szökőévek.
  • A születések eloszlása egyenletes, azaz minden nap körülbelül ugyanannyian születnek. Nem számít, hogy hétköznap, hétvége, ünnepnap. Az áramszüneti városi legendák sem.
  • Nem vesszük figyelembe az azonos napon született ikreket. Persze ikrek születhetnek különböző napokon is.

Azonos születésnap valószínűsége grafikonon

Lássuk, hogyan alakul az azonos születésnap valószínűsége az emberek számától függően! Grafikonon ábrázolva:

A fenti grafikonhoz szükséges adatok könnyen előállíthatók az alábbi Java forráskóddal:

A fenti Google Chart típusú szórásgrafikon (Scatter Chart, korrelációs diagram) megjelenítéséhez adatpárok sorozata szükséges. Ezek a konkrétumok (70 db adatpár), görgethető:

Hasonló grafikon készítéséről szintén blogoltam már: Céline Dion – Courage World Tour.

Párok előállítása

Az emberek születésnapjainak összehasonlítása párokban történik. 23 ember esetén 23*22/2=253 pár van. Általános esetben n ember esetén (n*(n-1))/2 pár adódik. A levezetés részletei a források között megtalálható. 59 ember esetén 1711 pár adódik és szinte garantált az előforduló azonos születésnap, hiszen már 0,99 ennek a valószínűsége.

Az alábbi Java forráskód – rekurzív módon – előállítja a 23 konkrét esetre a párokat, az embereket 1-23-ig sorszámozva. Kombinációk:

A main() metódusban az i változó paraméterezhető és a konkrét eset könnyen intervallumra változtatható. Eredményül ezt írja ki a program a konzolra, görgethető:

Kísérleti ellenőrzés

Tekintsünk például 1000 esetet! Készítsünk Java programot, amely 23 db véletlen születésnapot generál! Legyen ez a születésnap sorszáma az évben (másképpen hányadik napon született az ember az évben). Ez lényegesen egyszerűsíti a megoldást, összevetve a dátumkezelésen alapuló megközelítéssel. Ajánljuk a szakmai blog dátumkezelés címkéjét az érdeklődőknek, ahol megtalálhatók a témához kapcsolódó Java forráskódrészletek részletes magyarázatokkal kiegészítve. Íme a többféle generikus listát és programozási tételt használó forráskód:

Érdemes elemezni, tesztelni a fenti forráskódot: milyen lépésekben, milyen adatszerkezeteket épít. Hasznos lehet lambda kifejezésekkel kiegészíteni, módosítani a programot. Részlet a program szöveges eredményéből:

A 12. sorban lévő számhármasok jelentése: esetszám 1-től, azonos nap, előfordulás száma. Például: a kísérlet során a 8. esetben az év 225. napja azonos 3 embernél. Természetesen nincs garancia arra, hogy az 1000 eset vizsgálatánál mindig 500-nál nagyobb kedvező esetet kapunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra Objektumorientált programozás alkalmaihoz kötődik.

Források

Fibonacci-sorozat

Fibonacci logó

Fibonacci logóMa van (november 23.) a Fibonacci nap (újra). Fibonacci középkori matematikus volt, ő tette közismertté a Fibonacci-sorozat-ot. A (0), 1, 1, 2, 3, 5, 8, 13, 21, 34, sorozat igen népszerű azok közében is, akik programozást tanulnak. A sorozat első két eleme 1 és 1 (ha szükséges, akkor nulladik elemmel is dolgozhatunk), és minden további elem az előző két elem összege.

Korábban is blogoltak a kollégáim a témában:

Következzen most az én öt különböző megoldásom Java forráskódja, rövid magyarázattal. Mindegyik a Fibonacci-sorozat első tíz elemét állítja elő.

1. megoldás

Az első megoldás generikus listát épít. Az első két elemet elhelyezi a lista elején ( list.add(1)). Ezek a lista nulladik és első elemei lesznek. Ezután a metódus a maradék 8 elemmel 2-től n-1-ig fiktív indexként hivatkozva az előző két elem összegeként ( list.get(i-1)+list.get(i-2)) index nélkül bővíti a listát.

2. megoldás

A második megoldás a tipikusan nem hatékony rekurzív módszert implementálja. A rekurzív fib() függvény a sorozat egyetlen elemét adja vissza, amit (a függvényt) a ciklus sokszor meghív ahelyett, hogy a ciklus vagy a rekurzió „emlékezne” az előző elemekre.

3. megoldás

A harmadik megoldás funkcionális nyelvi elemeket (Stream API) használ. A folyamba kétdimenziós tömbre történő hivatkozással ( f-> new int[] ), közvetlen hozzárendeléssel/leképezéssel ( map()), kerülnek be a sorozat elemei.

4. megoldás

A negyedik megoldás a Fibonacci-számok zárt alakját használja. Másképpen ez a Binet-formula:

Ezzel a képlettel a sorozat elemei közvetlenül megadhatók, azaz nem szükséges más elemekre való hivatkozás. A ciklus adja meg, hogy a sorozat 1-10-ig indexelt elemei szükségesek.

5. megoldás

Az ötödik megoldás szintén Stream API-t használ. Először előállít egy sorozatot 1-10-ig, amiket a leképezésnél ( map()) inputként használ és alkalmazza rájuk a Binet-formulát. Hagyományos ciklus utasítás nem szükséges.

Eredmény

Mindegyik megoldás a konzolra írja szövegesen az eredményt, azaz a Fibonacci-sorozat első tíz elemét: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. Érdemes elemezni a hatékonyság klasszikus három szempontja (időigény/lépésszám, tárigény, bonyolultság) alapján a különböző megoldásokat. Ezek mérésével könnyen kiegészíthetők a fenti metódusok, vagy az azokat meghívó osztályban a vezérlés.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió és 17-28. óra Objektumorientált programozás alkalmaihoz kötődik.

IT történet – decemberben történt

IT történet blog bejegyzés sorozatunkban válogatunk a decemberben történt események közül – bármikortól napjainkig. A főbb témakörök: IT általában, számítástudomány, hardver, szoftver, platform, szoftverfejlesztés, játékprogramok, híres informatikusok, kibernetikusok, feltalálók, IT hírek, technológiai mérföldkövek. Természetesen nem törekedhetünk a teljességre, pusztán érdekességeket említünk röviden, tömören, amit illik tudni a szakterület iránt érdeklődőknek.


2010. december 2-án, 11 éve történt:
Megjelent a Viber okostelefonokra készült ingyenes VOIP alkalmazás – a Skype vetélytársaként. Először csak iPhone-on működött.


1924. december 3-án, 97 éve történt:
Megszületett John Backus amerikai matematikus, informatikus. Megalkotta a BNF jelölésrendszert, amely programozási nyelvek nyelvtanának leírására használható.


2020. december 3-án, tavaly történt:
Kínában elérték a kvantumfölényt a Jiuzhang nevű kvantumszámítógéppel, amely percek alatt végezhet el olyan számításokat, amikhez a világ legerősebb szuperszámítógépének kétmilliárd évre lenne szüksége.


2020. december 4-én, tavaly történt:
Megtörtént a világ első célzott kibertámadása, postai csomagpont hálózat ellen. Egyszerre kinyitották a PickPoint cég Moszkvában lévő csomagautomatái közül 2732-nek az ajtajait.


2001. december 8-án, 20 éve történt:
Elhunyt Betty Holberton. Az ENIAC egyik programozója volt 1946-ban. Feltalálta a töréspontokat, amelyeket a számítógépes hibakeresés (debugging) során használunk.


1815. december 10-én, 206 éve történt:
Megszületett Ada Lovelace angol matematikus és írónő, akit az első számítógép-programozónak tekintünk.


2005. december 10-én, 16 éve történt:
Megjelent Európában az Xbox 360, a Microsoft által fejlesztett hetedik generációs otthoni videójáték-konzol, az Xbox utódja.


2008. december 11-én, 13 éve történt:
A Google Inc. kiadta számítógépeken és mobil eszközökön is ingyenesen használható Chrome webböngészőjének első stabil verzióját.


2020. december 15-én, tavaly történt:
Átadásra került az a villaépület, amelyet a MEET (Middle East Eng. Technologies) két hét alatt 3D nyomtatott a Sharjah emírségben.


1990. december 20-án, 31 éve történt:
A CERN részecskefizikai kutatóközpontjában dolgozó Tim Berners-Lee létrehozta a világ első weboldalát, amivel megkönnyítette az intézményen belüli kommunikációt. Az oldalt kilenc hónap múlva publikálta.


1995. december 21-én, 26 éve történt:
Megjelenik a Ruby 0.95, interpreter alapú, általános célú, magasszintű programozási nyelv első változata. Tervezője és megalkotója a japán Yukihiro Matsumoto.


1834. december 23-án, 187 éve történt:
Charles Babbage angol matematikus és korai számítógép-tudós elkészítette az analitikai gép terveit. Ez volt az első mechanikus számítógépek egyike.


1957. december 25-én, 64 éve történt:
II. Erzsébet brit királynő elfogadta a BBC felkérését és élő adásban felolvasta televíziós karácsonyi üzenetét. Emberek milliói, akik a legszentebb családi ünnepeken otthonukban ülnek, először csatlakoztak a királynőhöz az otthonában.


1992. december 26-án, 29 éve történt:
Elhunyt Kemény János magyar-amerikai matematikus, számítástechnikus, a BASIC programozási nyelv megalkotója.


1903. december 28-án, 118 éve történt:
Megszületett Neumann János magyar születésű matematikus. Kvantummechanikai elméleti kutatásai mellett a digitális számítógép elvi alapjainak lefektetésével vált ismertté.