Euler állatos feladata – geometriai megközelítés

EulerAllatValaki sertést, kecskét és juhot vásá­rolt, összesen 100 állatot, pontosan 100 aranyért. A sertés darabja 3 és fél arany, a kecskéé 1 és egyharmad, a juhoké fél arany. Hány darabot vehetett az egyes állatokból?

Tudjuk, hogy a feladatnak három megoldása van:

  • 5 db sertés és 42 db kecske és 53 db juh
  • 10 db sertés és 24 db kecske és 66 db juh
  • 15 db sertés és 6 db kecske és 79 db juh

Klasszikus informatikai megközelítést – egymásba ágyazott ciklusokat – bemutattam már: Euler állatos feladata. A brute force alapgondolat fokozatos finomítását követően néhány ötleteket is adtam a továbbfejlesztéshez. Ez igazi örökzöld feladat. Látogatottsága alapján rendületlenül népszerű ez a blog bejegyzés az it-tanfolyam.hu szakmai blogban. Többek között ez inspirált a feladattal való további foglalkozásra.

Mit jelent a geometriai megközelítés?

Egy térbeli pont három koordinátával leírható. Az (s, k, j) ponthármas jelenti a sertések, kecskék és juhok számát. Az RGB színkockához hasonlóan (amibe belefér az összes ábrázolható színhez tartozó koordinátapont), most is elférünk egy kockában. Legyen a kocka egyik csúcsa az origó és az élei legyenek 100 egység hosszúak. A feladat megfogalmazása alapján két egyenlet (e1 és e2) írható fel 3-3 együtthatóval. Mindkét egyenlet meghatároz egy síkot (s1 és s2) a térben, amelynek ábrázoljuk a kockába eső síkmetszeteit. A két sík metszésvonala egyenes (e3), amire esnek a megoldások pontjai (m1, m2, m3). Lépésenként haladunk a geometriai ábrázolás során.

A grafikus felületen történő ábrázoláshoz, rajzoláshoz két korábbi projektünkből indulunk ki. A Kígyókocka grafikus felületen feladat ismertet egy grafikus keretrendszert JavaFX-ben megvalósítva. A három részből álló Naprendszer szimuláció esettanulmányunk pedig ismerteti az ábrázoláshoz szükséges elméleti hátteret, homogén transzformációkat, vetületi leképezést, Java forráskódot is bemutat a transzformációs mátrix alkalmazására.  Az eddig említett három blog bejegyzést mind összeépítve készültek a továbbiak.

A geometriai megoldást lépésenként, saját fejlesztésű, grafikus felhasználói felülettel rendelkező, JavaFX alapú programról készült képernyőképek mutatják be – markáns Java forráskód-részletekkel.

Hogy jelenik meg a megoldásokat tartalmazó kocka?

Elegendő ábrázolni a kockának azt a három élét, amik egybeesnek a koordinátatengelyekkel. Az RGB színkockához hasonlóan piros, zöld, kék színekkel jelennek meg a három tengelyen lévő néhány pont. Az ábrázoláshoz érdemes kísérletezni egy kicsit: mekkora méretben (skála), honnan (nézőpont), milyen messziről (vetület, ideális pont, perspektíva, távolság) látszik a modelltérbeli objektum (igen, ez a kocka).

Az alábbi Java forráskód-részlet helyezi el a fenti pontokat. Mindhárom tengelyen 5-től 95-ig, 10-esével haladunk. Így elkerülhető, hogy az origóba kerüljön pont, hiszen az nem tudna egyszerre három színnel megjelenni. Mivel az állatok száma pozitív, így a koordinátapontok is nemnegatívak.

Hol vannak az első egyenlet síkjának pontjai?

A korábbi megoldásnál feltételként megfogalmazott első 3.5*s+4.0/3*k+0.5*j==100 egyenlet egyszerű átalakításokkal megadja a piros és zöld síkbeli ponthoz tartozó kék térbeli pontot: j=(600-21*s-8*k)/3. Ezek az s1 síkra esnek. A citromsárga pontokat páros koordinátapárokra vizsgált feltétel jelöli ki. A narancssárga vonal behatárolja ezt a síkmetszetet. Ez a négyszög (trapéz) esik bele a kockába.

A citromsárga pontokat az első egymásba ágyazott ciklusok adják hozzá az ábrázolt modelltérhez: érzékeltetve a síkbeli pontokat. A narancssárga pontokkal a második egymásba ágyazott ciklusok bővítik a modellteret: behatárolva a kockabeli négyszög síkrészletet. (A trapéz oldalait szakaszként is lehetne ábrázolni, de ez a kellően sűrű ponthalmaz is elegendő).

Hol vannak a második egyenlet síkjának pontjai?

Hasonlóan az eddigiekhez. A korábbi  s+k+j==100 feltételből adódik a szintén feltételként megfogalmazott  j==100-s-k egyenlet. Ezek az s2 síkra esnek. Világosszürke pontok érzékeltetik a síkot és sötétszürke pontok adják a síkrészlet határait. A síkból ez a háromszög esik bele a kockába.

A Java forráskód nagyon hasonló az előzőhöz.

Hogyan helyezkedik el a két sík a kockában?

Egyben kirajzoltatva a fentieket, könnyen adódik ez az ábra:

Hol van a két sík metszésvonala?

Mivel a két sík nem esik egybe, így van metszésvonaluk. Ez egy egyenes, amiből csak az az e3 szakasz rész szükséges, ami a kockába esik. Bíbor (magenta) szín jelöli az alábbi ábrán:

Ahol a két egyenlethez tartozó konkrét pontok egybeesnek, ott van a metszésvonal. A behelyettesítést behatároló ciklusok szervezéséből (a ciklusváltozók alsó és felső és határaiból) adódik, hogy csak a kockabeli szakaszt rajzolja ki az alábbi Java forráskód-részlet:

Hol jelenik meg a feladat három megoldása?

A két egyenlethez tartozó síkok kockába eső metszésvonalán helyezkednek el az egész koordinátákkal ábrázolható, koordináta-hármasként megjelenő pontok. Nagyobb fehér pontok jelölik ezeket az alábbi ábrán:

Az eddigiek alapján könnyen adódik a három pont/megoldást ábrázoló Java forráskód-részlet:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ez a feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, illetve 9-12. óra: Metódusok, rekurzió alkalmához, a 29-36. óra Grafikus felhasználói felület alkalmaihoz, valamint minden tanfolyamunk orientáló moduljának 1-4. óra: Programozási tételek alkalmához kapcsolódik.

Tanfolyamainkon JavaFX grafikus felülettel hangsúlyosan nem foglalkozunk, de egy-egy kész forráskódot közösen megbeszélünk, és össze is hasonlítjuk a swing-es változattal. Fejlesztünk játékprogramot, de inkább konzolosan, vagy swing-es ablakban, vagy webes alkalmazásként.

A grafikus felületek felépítésének megismerése fontos lépcső az objektumorientált programozás elmélyítéséhez, gyakorlásához. A grafikus felületekhez egy másik lényeges szemléletváltás is kapcsolódik, hiszen a korábbi algoritmusvezérelt megközelítést felváltja az eseményvezérelt (eseménykezelés). A GUI-s feladatainkat tudatosan hangsúlyozott MVC-s projektekben készítjük el.


Ajánljuk a Java SE szoftverfejlesztő tanfolyam kategóriából

Szólj hozzá!