Euler állatos feladata – geometriai megközelítés

EulerAllat

EulerAllatValaki sertést, kecskét és juhot vásá­rolt, összesen 100 állatot, pontosan 100 aranyért. A sertés darabja 3 és fél arany, a kecskéé 1 és egyharmad, a juhoké fél arany. Hány darabot vehetett az egyes állatokból?

Tudjuk, hogy a feladatnak három megoldása van:

  • 5 db sertés és 42 db kecske és 53 db juh
  • 10 db sertés és 24 db kecske és 66 db juh
  • 15 db sertés és 6 db kecske és 79 db juh

Klasszikus informatikai megközelítést – egymásba ágyazott ciklusokat – bemutattam már: Euler állatos feladata. A brute force alapgondolat fokozatos finomítását követően néhány ötleteket is adtam a továbbfejlesztéshez. Ez igazi örökzöld feladat. Látogatottsága alapján rendületlenül népszerű ez a blog bejegyzés az it-tanfolyam.hu szakmai blogban. Többek között ez inspirált a feladattal való további foglalkozásra.

Mit jelent a geometriai megközelítés?

Egy térbeli pont három koordinátával leírható. Az (s, k, j) ponthármas jelenti a sertések, kecskék és juhok számát. Az RGB színkockához hasonlóan (amibe belefér az összes ábrázolható színhez tartozó koordinátapont), most is elférünk egy kockában. Legyen a kocka egyik csúcsa az origó és az élei legyenek 100 egység hosszúak. A feladat megfogalmazása alapján két egyenlet (e1 és e2) írható fel 3-3 együtthatóval. Mindkét egyenlet meghatároz egy síkot (s1 és s2) a térben, amelynek ábrázoljuk a kockába eső síkmetszeteit. A két sík metszésvonala egyenes (e3), amire esnek a megoldások pontjai (m1, m2, m3). Lépésenként haladunk a geometriai ábrázolás során.

A grafikus felületen történő ábrázoláshoz, rajzoláshoz két korábbi projektünkből indulunk ki. A Kígyókocka grafikus felületen feladat ismertet egy grafikus keretrendszert JavaFX-ben megvalósítva. A három részből álló Naprendszer szimuláció esettanulmányunk pedig ismerteti az ábrázoláshoz szükséges elméleti hátteret, homogén transzformációkat, vetületi leképezést, Java forráskódot is bemutat a transzformációs mátrix alkalmazására.  Az eddig említett három blog bejegyzést mind összeépítve készültek a továbbiak.

A geometriai megoldást lépésenként, saját fejlesztésű, grafikus felhasználói felülettel rendelkező, JavaFX alapú programról készült képernyőképek mutatják be – markáns Java forráskód-részletekkel.

Hogy jelenik meg a megoldásokat tartalmazó kocka?

Elegendő ábrázolni a kockának azt a három élét, amik egybeesnek a koordinátatengelyekkel. Az RGB színkockához hasonlóan piros, zöld, kék színekkel jelennek meg a három tengelyen lévő néhány pont. Az ábrázoláshoz érdemes kísérletezni egy kicsit: mekkora méretben (skála), honnan (nézőpont), milyen messziről (vetület, ideális pont, perspektíva, távolság) látszik a modelltérbeli objektum (igen, ez a kocka).

Az alábbi Java forráskód-részlet helyezi el a fenti pontokat. Mindhárom tengelyen 5-től 95-ig, 10-esével haladunk. Így elkerülhető, hogy az origóba kerüljön pont, hiszen az nem tudna egyszerre három színnel megjelenni. Mivel az állatok száma pozitív, így a koordinátapontok is nemnegatívak.

Hol vannak az első egyenlet síkjának pontjai?

A korábbi megoldásnál feltételként megfogalmazott első 3.5*s+4.0/3*k+0.5*j==100 egyenlet egyszerű átalakításokkal megadja a piros és zöld síkbeli ponthoz tartozó kék térbeli pontot: j=(600-21*s-8*k)/3. Ezek az s1 síkra esnek. A citromsárga pontokat páros koordinátapárokra vizsgált feltétel jelöli ki. A narancssárga vonal behatárolja ezt a síkmetszetet. Ez a négyszög (trapéz) esik bele a kockába.

A citromsárga pontokat az első egymásba ágyazott ciklusok adják hozzá az ábrázolt modelltérhez: érzékeltetve a síkbeli pontokat. A narancssárga pontokkal a második egymásba ágyazott ciklusok bővítik a modellteret: behatárolva a kockabeli négyszög síkrészletet. (A trapéz oldalait szakaszként is lehetne ábrázolni, de ez a kellően sűrű ponthalmaz is elegendő).

Hol vannak a második egyenlet síkjának pontjai?

Hasonlóan az eddigiekhez. A korábbi  s+k+j==100 feltételből adódik a szintén feltételként megfogalmazott  j==100-s-k egyenlet. Ezek az s2 síkra esnek. Világosszürke pontok érzékeltetik a síkot és sötétszürke pontok adják a síkrészlet határait. A síkból ez a háromszög esik bele a kockába.

A Java forráskód nagyon hasonló az előzőhöz.

Hogyan helyezkedik el a két sík a kockában?

Egyben kirajzoltatva a fentieket, könnyen adódik ez az ábra:

Hol van a két sík metszésvonala?

Mivel a két sík nem esik egybe, így van metszésvonaluk. Ez egy egyenes, amiből csak az az e3 szakasz rész szükséges, ami a kockába esik. Bíbor (magenta) szín jelöli az alábbi ábrán:

Ahol a két egyenlethez tartozó konkrét pontok egybeesnek, ott van a metszésvonal. A behelyettesítést behatároló ciklusok szervezéséből (a ciklusváltozók alsó és felső és határaiból) adódik, hogy csak a kockabeli szakaszt rajzolja ki az alábbi Java forráskód-részlet:

Hol jelenik meg a feladat három megoldása?

A két egyenlethez tartozó síkok kockába eső metszésvonalán helyezkednek el az egész koordinátákkal ábrázolható, koordináta-hármasként megjelenő pontok. Nagyobb fehér pontok jelölik ezeket az alábbi ábrán:

Az eddigiek alapján könnyen adódik a három pont/megoldást ábrázoló Java forráskód-részlet:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ez a feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, illetve 9-12. óra: Metódusok, rekurzió alkalmához, a 29-36. óra Grafikus felhasználói felület alkalmaihoz, valamint minden tanfolyamunk orientáló moduljának 1-4. óra: Programozási tételek alkalmához kapcsolódik.

Tanfolyamainkon JavaFX grafikus felülettel hangsúlyosan nem foglalkozunk, de egy-egy kész forráskódot közösen megbeszélünk, és össze is hasonlítjuk a swing-es változattal. Fejlesztünk játékprogramot, de inkább konzolosan, vagy swing-es ablakban, vagy webes alkalmazásként.

A grafikus felületek felépítésének megismerése fontos lépcső az objektumorientált programozás elmélyítéséhez, gyakorlásához. A grafikus felületekhez egy másik lényeges szemléletváltás is kapcsolódik, hiszen a korábbi algoritmusvezérelt megközelítést felváltja az eseményvezérelt (eseménykezelés). A GUI-s feladatainkat tudatosan hangsúlyozott MVC-s projektekben készítjük el.

Programozási Hét 2023 – CodeWeek.eu

Programozási hét CodeWeek.eu

Programozási hét CodeWeek.euAz Európai Programozási Hét idén 2023. október 7-22-ig kerül megrendezésre. Ez egy önkéntesek által működtetett, alulról szerveződő kezdeményezés. Az önkéntesek saját országukban a Programozási Hét nagyköveteként népszerűsítik a programozást. Ehhez nyílt és ingyenes (online és offline) eseményeket hirdetnek meg a CodeWeek.eu weboldalon.

A Programozási Hét célja

  • a programozással való alkotás megünneplése,
  • az emberek felvértezése képességekkel,
  • az emberek összekapcsolása,
  • még több ember érdeklődésének felkeltése a tudomány, a technológia, a mérnöki ismeretek és a matematika iránt.

Miért jó ez az érdeklődőknek/résztvevőknek?

  • A programozás szórakoztató!
  • Programozni kreatív tevékenység! Az emberiség a kezdetektől fogva alkot: agyagból, kőből, téglából, papírból vagy fából. Manapság programozással is alkotunk.
  • A programozás felvértez! Sokkal többre is képesek vagyunk annál, hogy csak fogyasszuk a digitális tartalmat; programozással sokféle dolgot alkothatunk, és azokat milliók számára elérhetővé tehetjük. Létrehozhatunk weboldalakat, játékokat, irányíthatunk egy számítógépet vagy egy robotot.
  • Értsük meg a világot! Manapság egyre több minden össze van kapcsolva. Ha némi rálátásunk van arra, hogy mi történik a színfalak mögött, akkor a világot is jobban megérthetjük.
  • A programozás megtanítja nekünk a számítógépes gondolkodást, fejleszti a problémamegoldást, kreativitást, kritikus érvelést, analitikus gondolkodást, valamint csapatmunkára késztet.
  • Manapság a munkahelyek 90%-a digitális készségeket, köztük programozási ismereteket követel a munkavállalóktól.

2015-től veszünk részt az esemény szervezésében, programozást népszerűsítő előadások, laborgyakorlatok meghirdetésével és megtartásával. 2022-ben világszerte 80+ országban 4+ millió érdeklődő résztvevő csatlakozott. Ajánljuk korábbi beszámolóinkat is szakmai blogunkból, lásd: CodeWeek.eu címke.

Meghirdetett eseményeink

2023-ban hat it-tanfolyam.hu-s eseményt hirdettünk meg a Programozási Hét 2023 rendezvényen.
Helyszín: 1056 Budapest, Váci utca 47., 3. emelet, megközelítés
Dátum és időpont: 2023. október 21. 9:00-12:00-ig
Az események ingyenesek voltak, de a részvétel előzetes regisztrációhoz kötött.

Rendezvényünk plakátja

A rendezvény jó hangulatban telt, 40+ érdeklődőt vonzott. Többen rendszeresen visszatérő vendégek voltak, például a tavaszi Digitális Témahét, vagy a szeptember végi Kutatók éjszakája rendezvényeinkről. Eltérő belső motivációval érkeztek, ezek kulcsszavakban: kíváncsiság, pályaorientáció, karrierváltás, programozási trükkök. Igazán tartalmasan telt el idén is ez a rendezvényre szánt három óra. Köszönöm oktató kollégáimnak és 2 korábbi hallgatónknak, hogy előadóként részt vettek a Programozási hét 2023 – CodeWeek.eu rendezvényünkön. Prezentációinkat tanfolyamaink hallgatói számára – a témához kapcsolódó témakörökhöz, ILIAS-ra feltöltve – tesszük elérhetővé.

9:00-9:25 – Szegedi Kristóf: Játékprogramok heurisztikáinak elemzése
A tudásalapú rendszerek elméleti alapjaihoz tartoznak a mesterséges intelligencia különböző megoldáskereső módszerei, az állapottér-reprezentáció és a klasszikus keresési stratégiák, heurisztikák. Egy játék állapotait nyilvántartjuk egy adatszerkezetben. Lehet, hogy néhány lépést előre kalkulálunk (kiterjesztünk) és ezek elágazásaiból fát (fa adatszerkezet) tudunk építeni. Ezeket hatékonyan karban kell tartani konstrukciós és szelekciós műveletekkel. Heurisztika alapján döntéseket kell hozni. Vajon melyik állapot a jobb, vagy kevésbé rossz, legalább olyan jó mint ahol járunk? Ki kell értékelni és abba az irányba érdemes haladni, amelyben végül a döntések sokasága igazolja és egyben adja a nyerő stratégiát. Ha ez nem megy, akkor még mindig játszhatunk nem vesztő stratégiával, azaz lehet cél a hosszabb játékmenet, vagy akár a döntetlen állapot is. Az előadás ismertet néhány tipikus problémaszituációt, játékteret leképező reprezentációs gráfbeli navigációt és összehasonlít néhány fabejáró/gráfbejáró stratégiát. A program mindhárom Java tanfolyamunk orientáló moduljához kötődik. Előismeretként feltételezünk némi jártasságot a programozási alapismeretek, programozási tételek, ciklusok, metódusok, tömbök témakörökből.

9:30-9:55 – Kaczur Sándor: Írjunk hatékony adatbázis-lekérdezéseket!
Az Oracle HR sémában, először tipikus, hétköznapi szavakkal megfogalmazunk néhány lekérdezést, majd SQL nyelven megvalósítjuk és elemezzük, hogy helyesek-e, hatékonyak-e, mit adnak vissza. Szükség esetén optimalizáljuk, testre szabjuk ezeket. Kategóriák: egyszerű, összetett, aggregáló, soktáblás, hierarchikus/rekurzív lekérdezések. Ha lehet, grafikusan is megjelenítjük a lekérdezések eredményeit Java swing felületen, beépített JTable és JTree komponensekkel, illetve JFreeChart grafikonnal is. A Java adatbázis-kezelő tanfolyamunk tematikájához kötődik a program. Előismeretként feltételezünk némi jártasságot adatbázis-kezelés, SQL, Java swing felhasználói felület témakörökből.

10:00-12:20 – Hollós Gábor: Érvényes lottószelvényt kaptunk?
Garantáltan helyes lottószelvény helyett előállítunk valamit, amiről feltételezhetjük, hogy lehet lottószelvény. Egymásra épülő unit teszteket készítünk, hogy valóban lehet-e. Például: kapott a teszt metódus egyáltalán valamit paraméterként? Tömböt kapott paraméterként? Hány elemű tömböt? Mekkora a tömbben lévő legkisebb és legnagyobb elem? Különböző a tömbben minden elem? (Ha nagyon szigorúak vagyunk: növekvő sorrendben vannak a tömbben az elemek?) Ha minden kritérium teljesül, akkor érvényes lottószelvényünk van. Kiegészíthetjük időméréssel is. Megtudjuk, hogyan kapjuk meg azt, hogy az esetek 89%-a helyes ötöslottó szelvény lesz. A program a Java SE szoftverfejlesztő tanfolyamunk tematikájához kapcsolódik. Előismeretként feltételezünk némi jártasságot programozási alapismeretek, programozási tételek, ciklusok, metódusok, tömbök, listák, halmazok, lambda kifejezések témakörökből.

10:25-10:55 – Kaczur Sándor: Java kollekciók hatékonysága
Adott egy ismert algoritmus egy ismert problémára. A gyakorlati bemutató példákat mutat arra, hogy az ismert Java kollekció keretrendszer különböző adatszerkezeteinek funkcionalitását/szolgáltatásait felhasználva mennyire eltérő megoldásokat tudunk készíteni. Mindegyik megoldás ugyanazt az eredményt adja, de alapjaiban más gondolatmenettel születtek. Vajon melyik tekinthető hatékonyabbnak? Mennyi tárhelyet igényelnek? Mennyi idő alatt hajtódnak végre? Mennyire bonyolultak, azaz mennyire könnyű/nehéz megérteni/dokumentálni/elmagyarázni? Előkerülnek különböző Set, Queue, List, Map implementációk, programozási tételek. Amit csak lehet, mérünk, összehasonlítunk, elemzünk. Végül az eredmények alapján javaslatokat adunk: mikor, miért, mit (mit ne), hogyan (hogyan ne) használjunk. A program a Java SE szoftverfejlesztő tanfolyamunk tematikájához kötődik. Előismeretként feltételezünk némi jártasságot a programozási alapismeretek, programozási tételek, ciklusok, metódusok, tömbök, listák, halmazok, lambda kifejezések témakörökből.

11:00-11:25 – Kiss Balázs: Gondolkodjunk logikusan!
Az előadás során áttekintjük az intelligencia, a kreatív problémamegoldó és logikus gondolkodás összefüggéseit és izgalmas feladatokból válogatva közösen megoldunk néhány fejtörő feladatot. Néhány példa: Hány éves a kapitány?CHOO + CHOO = TRAIN, Logikus gondolkodás teszt. Minden feladathoz adunk rávezető példákat – ha esetleg egyik-másik nem menne, akkor ebből megtudod, miket érdemes gyakorolni, hogy menjen. A program mindhárom Java tanfolyamunk orientáló moduljához kötődik. Előismeretként feltételezünk némi jártasságot az algoritmusok, programozási alapismeretek, programozási tételek témakörökből.

11:30-12:00 – Falus Anita, Horváth Zoltán Miklós: Friss munkaerőpiaci tapasztalataink szoftverfejlesztőként
Mennyire könnyű ma szoftverfejlesztőként elhelyezkedni szakirányú felsőfokú végzettség nélkül? Milyen kihívásokkal találkozhatunk a felvételi folyamat során? Milyen elvárásokat támasztanak a munkaadók egy junior szakemberrel szemben? Hogyan telnek a beilleszkedés után a hétköznapok junior fejlesztőként kis létszámmal működő informatikai profilú kisvállalkozásnál? A tanfolyamainkon 2021-ben és 2022-ben végzett előadók karrierváltó junior szakemberként személyes tapasztalataikról számolnak be és válaszolnak a kérdésekre. A program a Java tanfolyamaink orientáló moduljához kötődik.

Születésnap-paradoxon

Mennyi a valószínűsége, hogy n ember között van kettő, akiknek egy napon van a születésnapja? A meglepő a dologban az, hogy már 23 ember esetén a kérdéses valószínűség 1/2-nél nagyobb. Másképpen: már 23 ember esetén nagyobb annak az esélye, hogy megegyezik a születésnapjuk, mint az ellenkezőjének. Ez a 23 nagyon kevésnek tűnik. Ezért paradoxon.

Közismert néhány hétköznapi valószínűség. Íme néhány szabályos eset. A pénzfeldobás során 1/2 az esélye a fej és 1/2 az esélye az írás eredménynek (másképpen 50%-50%, azaz fifty-fifty). A kockadobás esetén 1/6 az esélye bármelyik számnak 1-től 6-ig. Két kocka esetén blogoltam már a dobott számok összegének alakulásáról, eloszlásáról: Kockadobás kliens-szerver alkalmazás.

Néhány egyszerűsítés

  • Az év 365 napból áll. Nem számítanak a 366 napos szökőévek.
  • A születések eloszlása egyenletes, azaz minden nap körülbelül ugyanannyian születnek. Nem számít, hogy hétköznap, hétvége, ünnepnap. Az áramszüneti városi legendák sem.
  • Nem vesszük figyelembe az azonos napon született ikreket. Persze ikrek születhetnek különböző napokon is.

Azonos születésnap valószínűsége grafikonon

Lássuk, hogyan alakul az azonos születésnap valószínűsége az emberek számától függően! Grafikonon ábrázolva:

A fenti grafikonhoz szükséges adatok könnyen előállíthatók az alábbi Java forráskóddal:

A fenti Google Chart típusú szórásgrafikon (Scatter Chart, korrelációs diagram) megjelenítéséhez adatpárok sorozata szükséges. Ezek a konkrétumok (70 db adatpár), görgethető:

Hasonló grafikon készítéséről szintén blogoltam már: Céline Dion – Courage World Tour.

Párok előállítása

Az emberek születésnapjainak összehasonlítása párokban történik. 23 ember esetén 23*22/2=253 pár van. Általános esetben n ember esetén (n*(n-1))/2 pár adódik. A levezetés részletei a források között megtalálható. 59 ember esetén 1711 pár adódik és szinte garantált az előforduló azonos születésnap, hiszen már 0,99 ennek a valószínűsége.

Az alábbi Java forráskód – rekurzív módon – előállítja a 23 konkrét esetre a párokat, az embereket 1-23-ig sorszámozva. Kombinációk:

A main() metódusban az i változó paraméterezhető és a konkrét eset könnyen intervallumra változtatható. Eredményül ezt írja ki a program a konzolra, görgethető:

Kísérleti ellenőrzés

Tekintsünk például 1000 esetet! Készítsünk Java programot, amely 23 db véletlen születésnapot generál! Legyen ez a születésnap sorszáma az évben (másképpen hányadik napon született az ember az évben). Ez lényegesen egyszerűsíti a megoldást, összevetve a dátumkezelésen alapuló megközelítéssel. Ajánljuk a szakmai blog dátumkezelés címkéjét az érdeklődőknek, ahol megtalálhatók a témához kapcsolódó Java forráskódrészletek részletes magyarázatokkal kiegészítve. Íme a többféle generikus listát és programozási tételt használó forráskód:

Érdemes elemezni, tesztelni a fenti forráskódot: milyen lépésekben, milyen adatszerkezeteket épít. Hasznos lehet lambda kifejezésekkel kiegészíteni, módosítani a programot. Részlet a program szöveges eredményéből:

A 12. sorban lévő számhármasok jelentése: esetszám 1-től, azonos nap, előfordulás száma. Például: a kísérlet során a 8. esetben az év 225. napja azonos 3 embernél. Természetesen nincs garancia arra, hogy az 1000 eset vizsgálatánál mindig 500-nál nagyobb kedvező esetet kapunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra Objektumorientált programozás alkalmaihoz kötődik.

Források

Keresztrejtvény készítése

Támogatjuk a keresztrejtvények készítését Java programmal. A program grafikus felülete eszköztárból és a keresztrejtvényből áll. Az elkészült programban 10×10-től 15×15-ig beállítható négyzetrács készíthető elő. A tiltott négyzetek száma 15-től 30-ig beállítható. Mivel a tiltott négyzetek helyzete véletlenszerű, így nem biztos, hogy az elsőre jó/szerencsés lesz, ezért újragenerálható a négyzetrács. A program a tipikus követelményeknek megfelelően sorfolytonosan sorszámozza a négyzetrács elemeit, ami alapján megadhatók hozzá a vízszintes és függőleges feladványok. A program az elfogadott négyzetrácsot többféle képformátumban is el tudja menteni.

Az elkészült Java program grafikus felülete

Objektumorientált tervezés

A keresztrejtvény ábrája egy négyzetrácsból áll, amelyben rejtvénymezők helyezkednek el. A rejtvénymezőnek megfelel egy örökítéssel felüldefiniált címkekomponens. A rejtvénymezőt körülveszi egy szegély/keret, tiltott vagy sem állapotától függően fekete vagy fehér a háttérszíne, valamint van a bal felső sarkához igazított kis méretű betűvel nem kötelezően megjeleníthető sorszáma. A tiltott és sorszám tulajdonságait kell tudni beállítani és megkérdezni. Ez a feladatban a RejtvenyMezo POJO. A négyzetrács sorai és oszlopai azonos méretűek (pixelre és darabszámra egyaránt).

Algoritmus a keresztrejtvény sorszámozására

A rejtvénymezők kétdimenziós négyzetes mátrixban/tömbben helyezkednek el. A sorszámozáshoz hasznos, ha a négyzetrácsot körbeveszi egy tiltott rejtvénymezőkből álló keret. Először a rács sorain és oszlopain végighaladó egymásba ágyazott ciklusok létrehozzák a POJO-kat úgy, hogy a négyzetrács keretén lévő rejtvénymezők tiltottak, a többi nem tiltott. Ezután véletlenszerűen ki kell választani – a még nem tiltottak közül – a szükséges mennyiségű tiltott rejtvénymezőt. Ezután sorfolytonosan sorszámozni kell azokat a rejtvénymezőket, ahol vízszintes vagy függőleges feladvány kezdődik. Ehhez is két egymásba ágyazott ciklus kell, amelyben minden még nem tiltott rejtvénymező egyre növekvő sorszámot kap, ha tőle balra tiltott és tőle jobbra nem tiltott rejtvénymező helyezkedik el, de akkor is, ha felette tiltott és alatta nem tiltott rejtvénymező található.

A keresztrejtvényt sorszámozó algoritmus Java megvalósítása

Továbbfejlesztési lehetőségek

  • A feladványok listázhatók és kideríthető a hosszuk.
  • A tiltott rejtvénymezők véletlenszerű elhelyezése helyett lehetne valamilyen szabály, stratégia az egymáshoz való helyzetükre, távolságukra, közvetlen szomszédságukra vonatkozóan. Figyelembe vehetnénk valamilyen szimmetriát is, mintákat, alakzatokat is. Véletlenszerű elhelyezésük nem biztos, hogy mindig jó/szerencsés: például a tiltott rejtvénymezők körbezárhatnak egy nem tiltottat, hosszabb feladványokat nehezebb találni…
  • A Java SE szoftverfejlesztő tanfolyam tematikájához kötődően többféle szótárból, fájlformátumból betölthetünk a feladványokhoz használható, például 7 betűs országnevek, 2 betűs kémiai elemek, női/férfi keresztnevek, autójelek, pénznemek, szinonimák…
  • A Java EE szoftverfejlesztő tanfolyam tematikához kötődően többféle webes adatforrásból, Wikipédiából, szótárból, API hívásokkal letölthetünk a feladványokhoz használható listákat, meghatározásokat, kulcs-érték párokat. A swing-es felületet lecserélhetjük böngészőben futó webes GUI-ra is.
  • A Java adatbázis-kezelő tanfolyam tematikájához kötődően a fentiek kiegészítéseként tervezhetünk és építhetünk helyben tárolt tudástárat, adatbázist, amiből hatékonyan lekérdezve adhatunk feladványokat a keresztrejtvényhez.
  • Miután a fentiek szerint valahogyan – tipikusan visszalépéses algoritmussal – meghatároztuk a feladványokat, a keresztrejtvényből menthetünk kitöltött változatot is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Logikus gondolkodás teszt

Mensa logó

Mensa logóAz elmúlt 20 évben rengeteg logikai feladatokból álló tesztet állítottam össze. Kezdetben iskolai szakkörökhöz, versenyekre való felkészítéshez, tehetséggondozáshoz használtam ezeket. Ezután következett a Logikus gondolkodásra nevelő Diákműhely, amelyben ez már professzionális lett. Végül több cég/vállalkozás számára állítottam össze többféle programozói, szoftverfejlesztői tanfolyam tematikájához illeszkedően toborzáshoz, felvételihez, jelentkeztetéshez, kiválogatáshoz, szakmai interjúk során használható tesztet/feladatsort. Ezek eltérő igények szerint mérik/skálázzák a logikus gondolkodást, a problémamegoldást, az algoritmikus készségek meglétét, az összefüggések/szabályok felismerésének és alkalmazásának szintjét, a szakmai felkészültséget.

A logikus gondolkodáshoz kötődően rendszeresen szoktam előadásokat is tartani például országos rendezvényeken (Kutatók éjszakája, Digitális Témahét, Programozási Hét – CodeWeek.eu), pályaorientációs napokon és tehetséggondozó versenyek szakmai napjain tanároknak, diákoknak, főiskolás/egyetemista, Erasmus hallgatóknak.

Korábban blogoltam a népszerű Hány éves a kapitány? címmel, ahol ajánlottam 8 db magyar szakirodalmat a témában.

Most angol Mensa IQ teszt szakfolyóiratból válogattam össze egy 10 feladatból álló, logikus gondolkodás mérésére alkalmas tesztet. A válaszok/megoldások név és e-mail cím megadásával automatikus válaszlevélben a bejegyzés végén hozzáférhetőek.

Logikus gondolkodás teszt – feladatok

1. feladat
Az alakzatok pozitív egész számokat jelölnek. Mi kerül a kérdőjel helyére?

logikai-feladat-01

 

2. feladat
A betűk és számok elrendezése logikus. Mi kerül a kérdőjel helyére?

logikai-feladat-02

 

3. feladat
A számok elrendezése logikus. Mi kerül a kérdőjel helyére?

logikai-feladat-03

 

4. feladat
A számok elrendezése logikus. Mi kerül a kérdőjel helyére?

logikai-feladat-04

 

5. feladat
Folytatva a sorozatot mennyi az idő a 4. analóg órán?logikai-feladat-05

 

6. feladat
A számok elrendezése logikus. Mi kerül a kérdőjel helyére?logikai-feladat-06

 

7. feladat
A táblázatban a piros mintával kitöltött cellák elhelyezkedése logikus. Honnan hiányzik 1 db piros mintával kitöltött cella?logikai-feladat-07

 

8. feladat
A szimbólumok elrendezése logikus. Mi kerül a kérdőjel helyére?

logikai-feladat-08

 

9. feladat
56 db jutalomfalattal megetethető 10 háziállat, amelyek vegyesen macskák és kutyák. A macskák 5 db-ot, a kutyák 6 db-ot kapnak és végül marad 1 db jutalomfalat. Hány macska és hány kutya kap enni?

logikai-feladat-09

 

10. feladat
A 7 szám közül 6 párba állítható. Melyik szám marad ki?logikai-feladat-10


Logikus gondolkodás teszt – megoldások