Euler állatos feladata – geometriai megközelítés

EulerAllat

EulerAllatValaki sertést, kecskét és juhot vásá­rolt, összesen 100 állatot, pontosan 100 aranyért. A sertés darabja 3 és fél arany, a kecskéé 1 és egyharmad, a juhoké fél arany. Hány darabot vehetett az egyes állatokból?

Tudjuk, hogy a feladatnak három megoldása van:

  • 5 db sertés és 42 db kecske és 53 db juh
  • 10 db sertés és 24 db kecske és 66 db juh
  • 15 db sertés és 6 db kecske és 79 db juh

Klasszikus informatikai megközelítést – egymásba ágyazott ciklusokat – bemutattam már: Euler állatos feladata. A brute force alapgondolat fokozatos finomítását követően néhány ötleteket is adtam a továbbfejlesztéshez. Ez igazi örökzöld feladat. Látogatottsága alapján rendületlenül népszerű ez a blog bejegyzés az it-tanfolyam.hu szakmai blogban. Többek között ez inspirált a feladattal való további foglalkozásra.

Mit jelent a geometriai megközelítés?

Egy térbeli pont három koordinátával leírható. Az (s, k, j) ponthármas jelenti a sertések, kecskék és juhok számát. Az RGB színkockához hasonlóan (amibe belefér az összes ábrázolható színhez tartozó koordinátapont), most is elférünk egy kockában. Legyen a kocka egyik csúcsa az origó és az élei legyenek 100 egység hosszúak. A feladat megfogalmazása alapján két egyenlet (e1 és e2) írható fel 3-3 együtthatóval. Mindkét egyenlet meghatároz egy síkot (s1 és s2) a térben, amelynek ábrázoljuk a kockába eső síkmetszeteit. A két sík metszésvonala egyenes (e3), amire esnek a megoldások pontjai (m1, m2, m3). Lépésenként haladunk a geometriai ábrázolás során.

A grafikus felületen történő ábrázoláshoz, rajzoláshoz két korábbi projektünkből indulunk ki. A Kígyókocka grafikus felületen feladat ismertet egy grafikus keretrendszert JavaFX-ben megvalósítva. A három részből álló Naprendszer szimuláció esettanulmányunk pedig ismerteti az ábrázoláshoz szükséges elméleti hátteret, homogén transzformációkat, vetületi leképezést, Java forráskódot is bemutat a transzformációs mátrix alkalmazására.  Az eddig említett három blog bejegyzést mind összeépítve készültek a továbbiak.

A geometriai megoldást lépésenként, saját fejlesztésű, grafikus felhasználói felülettel rendelkező, JavaFX alapú programról készült képernyőképek mutatják be – markáns Java forráskód-részletekkel.

Hogy jelenik meg a megoldásokat tartalmazó kocka?

Elegendő ábrázolni a kockának azt a három élét, amik egybeesnek a koordinátatengelyekkel. Az RGB színkockához hasonlóan piros, zöld, kék színekkel jelennek meg a három tengelyen lévő néhány pont. Az ábrázoláshoz érdemes kísérletezni egy kicsit: mekkora méretben (skála), honnan (nézőpont), milyen messziről (vetület, ideális pont, perspektíva, távolság) látszik a modelltérbeli objektum (igen, ez a kocka).

Az alábbi Java forráskód-részlet helyezi el a fenti pontokat. Mindhárom tengelyen 5-től 95-ig, 10-esével haladunk. Így elkerülhető, hogy az origóba kerüljön pont, hiszen az nem tudna egyszerre három színnel megjelenni. Mivel az állatok száma pozitív, így a koordinátapontok is nemnegatívak.

Hol vannak az első egyenlet síkjának pontjai?

A korábbi megoldásnál feltételként megfogalmazott első 3.5*s+4.0/3*k+0.5*j==100 egyenlet egyszerű átalakításokkal megadja a piros és zöld síkbeli ponthoz tartozó kék térbeli pontot: j=(600-21*s-8*k)/3. Ezek az s1 síkra esnek. A citromsárga pontokat páros koordinátapárokra vizsgált feltétel jelöli ki. A narancssárga vonal behatárolja ezt a síkmetszetet. Ez a négyszög (trapéz) esik bele a kockába.

A citromsárga pontokat az első egymásba ágyazott ciklusok adják hozzá az ábrázolt modelltérhez: érzékeltetve a síkbeli pontokat. A narancssárga pontokkal a második egymásba ágyazott ciklusok bővítik a modellteret: behatárolva a kockabeli négyszög síkrészletet. (A trapéz oldalait szakaszként is lehetne ábrázolni, de ez a kellően sűrű ponthalmaz is elegendő).

Hol vannak a második egyenlet síkjának pontjai?

Hasonlóan az eddigiekhez. A korábbi  s+k+j==100 feltételből adódik a szintén feltételként megfogalmazott  j==100-s-k egyenlet. Ezek az s2 síkra esnek. Világosszürke pontok érzékeltetik a síkot és sötétszürke pontok adják a síkrészlet határait. A síkból ez a háromszög esik bele a kockába.

A Java forráskód nagyon hasonló az előzőhöz.

Hogyan helyezkedik el a két sík a kockában?

Egyben kirajzoltatva a fentieket, könnyen adódik ez az ábra:

Hol van a két sík metszésvonala?

Mivel a két sík nem esik egybe, így van metszésvonaluk. Ez egy egyenes, amiből csak az az e3 szakasz rész szükséges, ami a kockába esik. Bíbor (magenta) szín jelöli az alábbi ábrán:

Ahol a két egyenlethez tartozó konkrét pontok egybeesnek, ott van a metszésvonal. A behelyettesítést behatároló ciklusok szervezéséből (a ciklusváltozók alsó és felső és határaiból) adódik, hogy csak a kockabeli szakaszt rajzolja ki az alábbi Java forráskód-részlet:

Hol jelenik meg a feladat három megoldása?

A két egyenlethez tartozó síkok kockába eső metszésvonalán helyezkednek el az egész koordinátákkal ábrázolható, koordináta-hármasként megjelenő pontok. Nagyobb fehér pontok jelölik ezeket az alábbi ábrán:

Az eddigiek alapján könnyen adódik a három pont/megoldást ábrázoló Java forráskód-részlet:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ez a feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, illetve 9-12. óra: Metódusok, rekurzió alkalmához, a 29-36. óra Grafikus felhasználói felület alkalmaihoz, valamint minden tanfolyamunk orientáló moduljának 1-4. óra: Programozási tételek alkalmához kapcsolódik.

Tanfolyamainkon JavaFX grafikus felülettel hangsúlyosan nem foglalkozunk, de egy-egy kész forráskódot közösen megbeszélünk, és össze is hasonlítjuk a swing-es változattal. Fejlesztünk játékprogramot, de inkább konzolosan, vagy swing-es ablakban, vagy webes alkalmazásként.

A grafikus felületek felépítésének megismerése fontos lépcső az objektumorientált programozás elmélyítéséhez, gyakorlásához. A grafikus felületekhez egy másik lényeges szemléletváltás is kapcsolódik, hiszen a korábbi algoritmusvezérelt megközelítést felváltja az eseményvezérelt (eseménykezelés). A GUI-s feladatainkat tudatosan hangsúlyozott MVC-s projektekben készítjük el.

Barátságos számok

Barátságos számok

Barátságos számokAzokat a számpárokat, amelyekre igaz, hogy az egyik szám önmagánál kisebb osztóinak összege megegyezik a másik számmal és fordítva, külön-külön barátságos számoknak, együtt barátságos számpárnak hívjuk.

Másképpen: legyen d(n) az n természetes szám önmagánál kisebb osztóinak összege. Ha d(a)=b és d(b)=a, ahol ab, akkor a és b barátságos számpár.

Például: (220; 284), hiszen a 220 önmagánál kisebb osztói: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 és ezek összege 284, illetve 284 önmagánál kisebb osztói: 1, 2, 4, 71, 142 és ezek összege 220.

Írjunk Java programot, amely kiírja az 1-10000 zárt intervallumban található barátságos számpárokat!

1. megoldás

A baratsagosSzamparok1() eljárás ciklusai a brute force módszer szerint behelyesítik az összes lehetséges számot. Minimális lépésszám csökkentésre adódik lehetőség, hiszen a belső ciklus j változója i+1-ről indítható (így a megtalált számpárok nem íródnak ki fordítva is, mert teljesül, hogy i<j).

Az osztokOsszege1(n) függvény is minden lehetséges osztót figyelembe vesz 1-től n-1-ig.

2. megoldás

Kisebb módosításokkal a lépésszám csökkenthető. A baratsagosSzamparok2() eljárás külső ciklusánál figyelembe vettem, hogy a legkisebb barátságos számpár kisebb tagja nagyobb 200-nál. Mivel a barátságos számpárok tagjainak paritása mindig megegyezik (azaz mindkettő páros vagy mindkettő páratlan), így a belső ciklus j változója indítható i+2-ről és léptethető kettesével ( j+=2), és továbbra is teljesül, hogy i<j.

Az osztokOsszege2(n) függvényt is módosítottam. Mivel az 1 minden számnak osztója, illetve a 2 minden páros számnak osztója, így s lehet 3 vagy 1 és a ciklus indítható 3-ról. A páros számok esetén a számnál kisebb legnagyobb osztó maximum n/2 lehet, illetve ugyanez páratlan számok esetén n/3 lehet. Ezekre figyelve a max változó adja a ciklus léptetésének felső határát. Az i változó léptetésénél figyelembe vettem, hogy páratlan számnak csak páratlan osztói lehetnek ( i=3-mal szinkronban).

3. megoldás

Az eddigi két egymásba ágyazott ciklus helyett átszervezhető a baratsagosSzamparok3() eljárás. A j>i && osztokOsszege2(j)==i feltétel kiértékelése így sokkal hatékonyabb.

Vajon milyen nagyságrendű különbségek adódnak, ha összehasonlítjuk a három megoldás futási idejét?

Az 1. megoldás futási ideje 1104156 ms, a 2. megoldásé 257055 ms, a 3. megoldásé 121 ms. A konkrét értékek helyett a nagyságrendet megfigyelve a különbség nagyon látványos.

Mindhárom megoldás helyes és megkapjuk az intervallumban található öt barátságos számpárt: (220; 284), (1184; 1210), (2620; 2924), (5020; 5564), (6232; 6368).

A bejegyzéshez tartozó teljes – időméréssel kiegészített – forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Források:

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomhoz kötődik.

Digitális Témahét 2017

A Digitális Témahét 2016-ban indult országos rendezvénysorozat. Fő célja a digitális pedagógia módszertanának népszerűsítése és elterjesztése. A program fontos törekvése, hogy a digitáliskompetencia-fejlesztés az informatikán túl kiterjedjen más tantárgyakra is. A résztvevő pedagógusok és diákok változatos és kreatív iskolai projektek keretében fejleszthetik képességeiket technológiával támogatott tanulás során. A Digitális Témahét rendezvény minden meghirdetett programja ingyenes.

A 2016/2017-es tanévben a rendezvény április 3-7. között valósult meg. Kiemelt témakörök/szempontok:

  • a multidiszciplináris megközelítés: a matematika, a természet- és mérnöki tudományok, valamint a művészet- és társadalomtudományok együttes megjelenítése;
  • a tanítás eszközkészletének és módszereinek megújítása;
  • a pedagógiai innováció, a digitális pedagógia ösztönzése;
  • az informatikai pályaorientáció.

Meghirdetett eseményünk

2017-ben egy eseményt hirdettem meg Digitális Témahét 2017 rendezvényen.
Helyszín: 1056 Budapest, Váci utca 47., 3. emelet 309-es terem, megközelítés
Dátum és időpont: 2017. április 7. 18:00-21:00-ig
Az esemény ingyenes volt, de a részvétel előzetes regisztrációhoz kötött.

A három órás laborgyakorlat a Brit érmék projektfeladat (forrás: Project Euler #31 Coin sums) megtervezését, négyféle megoldását és tesztelését foglalta magába.

Bevezetés:

  • Az Egyesült Királyságban 8-féle érme van forgalomban.
  • Ezek a következők (pound (£) és pence (p)): 1p, 2p, 5p, 10p, 20p, 50p, £1 (100p), és £2 (200p).
  • £2-ot például így lehet kifizetni: 1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p.
  • Hányféleképpen lehet kifizetni £2-ot úgy, hogy bármilyen érméből bármennyit felhasználhatunk?
  • A válasz: 73682.

A választ tartalmazó fájl letölthető: it-tanfolyam.hu-brit-ermek-megoldas-eredmeny.zip (377 kB, kicsomagolva 4,2 MB).

Feladatok Java nyelven: készíteni kell négy Java programot, amelyik listázza a lehetséges eseteket a konzolra a példa szerinti formátumban!

  • Az első iteratív megoldás brute force megoldást tartalmazzon! Ez 1473155834 lépésben fog véget érni.
  • A második iteratív megoldás próbálja csökkenteni a lépésszámot! A cél 3000000 alá eljutni, például: 2886726.
  • A harmadik megoldás rekurzív legyen!
  • A negyedik megoldás objektumorientált legyen!

A fokozatosság elvét betartva, sok-sok előismeretre volt szükség a feladatok megoldásához. A két legizgalmasabb rész a hatékonyság szempontjaihoz és a rekurzív megközelítéshez kötődött. Sok-sok kérdés hangzott el. Az i-edik megoldás direkt előállítása (a teljes sorozatból való kiválasztás nélkül) is felmerült. Köszönöm mindenkinek, aki részt vett rendezvényünkön.

A laborgyakorlaton készült forráskódokat tanfolyamaink hallgatói számára – a témához kapcsolódó témakörökhöz, ILIAS-ra feltöltve – tesszük elérhetővé.

Euler állatos feladata

EulerAllat

EulerAllatValaki sertést, kecskét és juhot vásá­rolt, összesen 100 állatot, pontosan 100 aranyért. A sertés darabja 3 és fél arany, a kecskéé 1 és egyharmad, a juhoké fél arany. Hány darabot vehetett az egyes állatokból?

Kezdjük informatikai eszközökkel megoldani a problémát és írjunk Java nyelven forráskódot!

1. megoldás

Klasszikus ötletként teljes leszámolást (brute force) megvalósítva ágyazzunk egymásba három ciklust és léptessük mindhárom változót ( s, k, j) 1-100-ig [//3, //4, //5]!

Így biztosan megkapjuk az összes megoldást, hiszen minden lehetséges értéket behelyettesítünk a feltételvizsgálatnál. A lépésszám 1000000, ami nagyon sok. Próbáljuk fokozatosan csökkenteni a lépésszámot!

2. megoldás

Vegyük figyelembe, hogy mindegyik fajta állatból kell legalább egyet venni, így léptessük a változókat 1-98-ig! Másképpen: ha bármelyik állatból a maximális darabot vennénk (98-at), a másik kettőből még mindig tudjunk venni minimális darabot (1-et, 1-et) [//3, //4, //5].

A lépésszám 941192.

3. megoldás

Vegyük figyelembe, hogy összesen 100 db állatot kell venni, így k legfeljebb 99-s, illetve j legfeljebb 100-s-k lehet [//4, //5]!

A lépésszám 161700.

4. megoldás

Vegyük figyelembe, hogy összesen 100 db aranyat költhetünk! A sertés a legdrágább: ezért s legfeljebb egészrész(100/3,5)=28 darab lehet, hasonlóan k legfeljebb egészrész(100/(4.0/3)-3,5)-s, azaz 71-s lehet [//3, //4].

A lépésszám 90692.

5. megoldás

Következtessünk abból, hogy az arany mérőszáma (100) egész szám: a sertések és juhok ára félre végződik és ezek összege tud lenni egész szám többféleképpen is, így a kecskék számának hárommal oszthatónak kell lennie, mivel csak így tud lenni egész szám a néhányszor négyharmad [//4].

A lépésszám 29439.

6. megoldás

Mivel páros számú állatot kell venni és s+j páros szám, így k-nak is párosnak kell lennie! A hárommal osztható számok közül minden másik páros, azaz hattal is osztható [//4].

A lépésszám 14132.

7. megoldás

Építsük be, hogy s+j legyen páros. [//5].

A lépésszám 7130.

8. megoldás

Ha s és k ismert, akkor j könnyen adódik 100-s-k-ként és nem kell rá ciklust szervezni. [//5].

A lépésszám 252.

Akinek még van kedve tovább próbálkozva csökkenteni a lépésszámot, íme néhány ötlet:

  • Az s maximális értéke könnyen csökkenthető 16-ra, ekkor a k legfeljebb 60-3*s és j adódik, így egyszerűsíthető lehet a 6*s+5.0/3*k==100 feltétel, valamint az eredmény kiírásánál j helyett 100-s-k. Ekkor a lépésszám 88.
  • Az s osztható öttel, így a ciklusa megszervezhető for(int s=5; s<=15; s+=5)-ként, amivel a lépésszám 14.
  • A k is adódik (100-6*s)*3/5.0-ként és a módosított k==Math.round(k) feltétellel a lépésszám 3.

Próbálkozhatunk egy kis matematikával is!

Néhány ötlet:

  • Egyszerű műveletekkel könnyen adódik, hogy 21s+8k+3j=600 és j=100-s-k, illetve s<600/21 és k<600/8-21s. Ezeket az összefüggéseket felhasználva is írhatunk programot.
  • Klasszikus diofantoszi (diofantikus) többismeretlenes algebrai egyenletrendszerként is megoldhatjuk a feladatot.
  • Egyebek: következtetés, kizárás, egyenlőtlenségek, becslések, kongruencia, szorzattá (hatvánnyá) alakítás, illetve az sem rossz ötlet, hogy „ránézek és kész”.

Végül a feladat megoldásai

5 db sertés és 42 db kecske és 53 db juh
10 db sertés és 24 db kecske és 66 db juh
15 db sertés és 6 db kecske és 79 db juh

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ez a feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, illetve 9-12. óra: Metódusok, rekurzió alkalmához, valamint minden tanfolyamunk orientáló moduljának 1-4. óra: Programozási tételek alkalmához kapcsolódik.