Egy matematika érettségi feladat megoldása programozással 2023

érettségi logó

érettségi logó

A 2023-as középszintű matematika érettségi feladatsorból az 5. feladat alkalmasnak bizonyult arra, hogy a programozás eszköztárával oldjuk meg. Rögtön többféleképpen is, hogy összehasonlíthatóak legyenek egymással. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor letölthető az oktatas.hu-ról.

5. feladat

Adja meg a 420 és az 504 legnagyobb közös osztóját! Megoldását részletezze!

Íme kulcsszavakban, mit érdemes átgondolni a megoldás előtt: számelmélet alaptétele, prímfelbontás (prímtényezős felbontás, faktorizáció), osztópár, prímek szorzata, prímtényezők szorzata, kanonikus alak, euklideszi algoritmus.

1. megoldás

Az első megoldás az euklideszi algoritmus alkalmazása. A metódus paraméterezhető. Pozitív paramétereket vár és képes kiírni a konzolra a két szám legnagyobb közös osztóját. A módszer alapötlete: a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. Ezzel csökken a nagyobb szám, így a cserék ismétlésével egyre kisebb számokat kapunk, amíg a két szám egyenlővé nem válik. Ez az eddigi számpároknak, így az eredeti számpárnak is a legnagyobb közös osztója. Az eredményt az utolsó nem nulla maradék while(m!=0) adja meg int lnko=b;. Az algoritmus lépésszáma csökkenthető, ha a>b, de ennek ellenőrzése nélkül is működik. Mivel a feladat kéri a megoldás részletezését, így aktiválva a megjegyzésbe tett forráskódokat, a kiírásból könnyen érthető, mi és hogyan történik:

A konkrét esetben a metódus eredménye: lnko (420; 504) = 84. Nagyobb számok esetében „beszédesebb” a program kiírása, több lépésben írja ki a megoldáshoz vezető utat, ezért érdemes többféle paraméterrel is tesztelni a metódust.

2. megoldás

A második megoldás a prímtényezős felbontásokon alapul. Mindkét szám esetén gyűjtsük össze listában ezeket, majd vegyük a két lista közös részét. (Ha lista helyett halmazok lennének, akkor metszet programozási tétel lenne.) A generikus listákba prímszámok kerülnek és bármelyik többször is előfordulhat. (Ezért most a leghosszabb közös részsorozat(ok) előállítása szükséges.) Addig osztjuk a számot 2-vel, amíg lehet, utána következik a többi prímosztó, amíg vannak. Érdemes több metódusra szétosztani a megoldást, mert jóval áttekinthetőbb és karbantarthatóbb Java forráskódot eredményez. A beszédes változó, objektum és metódusnevek is segítenek a megértésben. A második megoldás természetesen ugyanazt az eredményt adja, mint az első megoldás. Aktiválva a megjegyzésbe tett forráskódokat, a kiírásból most is könnyen érthetővé válik (középiskolás matematikaóra-szerűen), mi és hogyan történik:

Kanonikus alakban: 420 = 22 * 3 * 5 * 7, 504 = 23 * 32 * 7, így lnko (420; 504) = 22 * 3 * 7. Azaz összeszorozzuk a közös prímtényezőket az előforduló legkisebb hatványon.
A megoldás erősen épít a generikus kollekciók esetén jól használható Stream API lambda kifejezéseire. Ezeket most nem részletezem, helyette ajánlom a szakmai blogból a lambda kifejezés címkét.

Érdemes átgondolni

  • Nagy prímszámok esetén az euklideszi algoritmus nem hatékony. Az algoritmus végrehajtása kifejezetten lassú például a Fibonacci-számok esetén. A prímtényezőkre bontás feltételezett bonyolultságát számos kriptográfiai algoritmus használja ki. Vannak különleges esetek is, például: egyforma számok, az egyik szám 1, a két szám egymás többszöröse.
  • A feladat nem kérte a legkisebb közös többszörös meghatározását, de ha tudjuk a lnko(a, b)-t, akkor abból könnyen adódik a lkkt(a, b)=a*b/lnko(a, b).
  • A legnagyobb közös osztó tulajdonságait megismerve az euklideszi algoritmus könnyen optimalizálható. Számos esetben ellenőrzést végezhetünk, illetve triviális alapesetek is vannak. Létezik kiterjesztett euklideszi algoritmus is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 9-12. óra: Metódusok, rekurzió, valamint 17-28. óra: Objektumorientált programozás alkalmaihoz kötődik.

Fibonacci-sorozat

Fibonacci logó

Fibonacci logóMa van (november 23.) a Fibonacci nap (újra). Fibonacci középkori matematikus volt, ő tette közismertté a Fibonacci-sorozat-ot. A (0), 1, 1, 2, 3, 5, 8, 13, 21, 34, sorozat igen népszerű azok közében is, akik programozást tanulnak. A sorozat első két eleme 1 és 1 (ha szükséges, akkor nulladik elemmel is dolgozhatunk), és minden további elem az előző két elem összege.

Korábban is blogoltak a kollégáim a témában:

Következzen most az én öt különböző megoldásom Java forráskódja, rövid magyarázattal. Mindegyik a Fibonacci-sorozat első tíz elemét állítja elő.

1. megoldás

Az első megoldás generikus listát épít. Az első két elemet elhelyezi a lista elején ( list.add(1)). Ezek a lista nulladik és első elemei lesznek. Ezután a metódus a maradék 8 elemmel 2-től n-1-ig fiktív indexként hivatkozva az előző két elem összegeként ( list.get(i-1)+list.get(i-2)) index nélkül bővíti a listát.

2. megoldás

A második megoldás a tipikusan nem hatékony rekurzív módszert implementálja. A rekurzív fib() függvény a sorozat egyetlen elemét adja vissza, amit (a függvényt) a ciklus sokszor meghív ahelyett, hogy a ciklus vagy a rekurzió „emlékezne” az előző elemekre.

3. megoldás

A harmadik megoldás funkcionális nyelvi elemeket (Stream API) használ. A folyamba kétdimenziós tömbre történő hivatkozással ( f-> new int[] ), közvetlen hozzárendeléssel/leképezéssel ( map()), kerülnek be a sorozat elemei.

4. megoldás

A negyedik megoldás a Fibonacci-számok zárt alakját használja. Másképpen ez a Binet-formula:

Ezzel a képlettel a sorozat elemei közvetlenül megadhatók, azaz nem szükséges más elemekre való hivatkozás. A ciklus adja meg, hogy a sorozat 1-10-ig indexelt elemei szükségesek.

5. megoldás

Az ötödik megoldás szintén Stream API-t használ. Először előállít egy sorozatot 1-10-ig, amiket a leképezésnél ( map()) inputként használ és alkalmazza rájuk a Binet-formulát. Hagyományos ciklus utasítás nem szükséges.

Eredmény

Mindegyik megoldás a konzolra írja szövegesen az eredményt, azaz a Fibonacci-sorozat első tíz elemét: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55. Érdemes elemezni a hatékonyság klasszikus három szempontja (időigény/lépésszám, tárigény, bonyolultság) alapján a különböző megoldásokat. Ezek mérésével könnyen kiegészíthetők a fenti metódusok, vagy az azokat meghívó osztályban a vezérlés.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió és 17-28. óra Objektumorientált programozás alkalmaihoz kötődik.

Tankocka – Egyszerű sorbarendezés: Java forráskód

Folytatjuk Tankockák blog bejegyzés sorozatunkat. A feladatban helyes sorrendbe kell állítani a Java forráskód sorait. Ez főként a Java SE szoftverfejlesztő tanfolyamunk tematikájához kötődik.

A Java program véletlenszerű ötöslottó szelvényt állít elő. Adatszerkezetként generikus listát használ. Amikor csak lehet, épít a kollekció beépített képességeire (eldöntés, sorozatszámítás, rendezés). A szakterületnek megfelelően az ötöslottó szelvényen tárolt számok „emelkedő számsorrendben” jelennek meg. A forráskódban nincs jelölve a csomag, importok, behúzás, tagolás, igazítás.

Tankocka – Hang/Film felirattal: a barátkozás algoritmusa Dr. Sheldon Cooper szerint

Folytatjuk Tankockák blog bejegyzés sorozatunkat. A feladatban válaszolni kell a videóban megjelenő hat kérdésre. A kérdések algoritmusokhoz kapcsolódnak. A videó a népszerű Agymenők (The Big Bang Theory) című sorozat 2. évad 13. epizódjából való, melynek címe: A barátkozás módszertana (The Friendship Algorithm). Ez a témakör főként az alapozó tanfolyamunkhoz kötődik: Java SE szoftverfejlesztő tanfolyam.

Az algoritmusok a tipikusan programozási nyelvtől független, konvertálható tudást jelentik. Mindig szükség van rájuk. Többféle jelölésrendszer is kapcsolódik hozzájuk. Például folyamatábra, mondatszerű leírás, struktogram, Jackson-ábra. Az UML jelölésrendszer elemei közül az objektumok kommunikációját, viselkedését leíró ábrák is algoritmusleíró eszköznek tekinthetők.

Skandináv lottó demóprogram

Skandináv lottó (heteslottó) demóprogramot tervezünk és írunk meg Java nyelven. Lépésenként mutatja meg, hogy mi történik a háttérben: hogyan állítja elő véletlenszerűen a lottószelvényt.

Az emlékezet egy logikai tömb. Ebben 36 elem van. A nulladik elem nem számít, és legyen a többi elem (1-35-ig indexelve) kezdetben mind hamis. A cél: legyen a tömbben pontosan 7 db igaz érték. Másképpen: a logikai tömb a lottószelvényen megjátszható számok kiválasztottságát jelöli, igen vagy nem. A heteslottó-szelvény 7 db 1 és 35 közötti különböző egész számból áll.

Mindig 1 és 35 közötti egész véletlenszámot tippelünk. Kezdetben jóSzámDb=0. Az első tipp biztosan jó és jóSzámDb=1. A többi tipp esetén vizsgálni kell, hogy már kiválasztott-e. Ha igen, akkor nincs teendőnk. Ha nem, akkor meg kell jegyezni (kiválasztottá kell tenni, azaz igazzá kell állítani a logikai tömbben) és a jóSzámDb++ (növelhető). Mindezt ciklusban ismételjük, amíg a jóSzámDb<7 feltétel teljesül (másképpen: amíg nincs elegendő kiválasztott szám a szelvényen). Mindez biztosítja az egyediséget, különbözőséget. Ha jóSzámDb==7, akkor kiírjuk a lottószelvényre kerülő számokat az alapján, hol (melyik indexen) van a logikai tömbben igaz érték.

Tekintsük át az alkalmazott módszer hátrányait és előnyeit. Hátrány, hogy 36 logikai érték szükséges ahhoz, hogy 7 különböző számot előállítsunk. Előny, hogy egyszerű az algoritmus (nem kell keresés és megszámolás programozási tétel) és nincs szükség rendezésre sem, mert a szakterületre jellemző „emelkedő számsorrend” a logikai tömb bejárásával önkéntelenül is adódik. Hangsúlyozzuk, hogy ez csupán egyetlen módszer a nagyon sok izgalmas közül, amikkel generálható egy véletlenszerű lottószelvény.

A megvalósítás, Java forráskód egyszerű. Íme egy függvény, amely visszaadja azt kiválasztottságot jelölő logikai tömböt, amiből megfelelően indexelve kiíratható a véletlenszerűen generált lottószelvény:

Egy demóprogram, szimulációs program, oktatóprogram esetén nem is a konkrét feladat megoldása a cél/probléma. Sokkal inkább a lépésenkénti bemutatás, sok-sok konzolos kiírással vagy grafikus szemléltetéssel. Sokszor időzítővel késleltetjük, lassítjuk, gyorsítjuk a folyamatot, de előfordul az is, hogy rengetegszer megismételjük a tevékenységet és a kapott adatokat elemezzük, következtetünk belőlük. Most például a ciklust ki kell cserélni olyan léptetésre, ami a felhasználó kattintásához kötődik. Ha kéri a következő tippet a lottószelvényre, akkor megkapja. Ha nem kattint, akkor nem kapja meg. Az is egy csalás/lehetőség lenne, hogy a háttérben nem is logikai tömb adatszerkezet van, csupán a vizualizáció miatt tűnik annak.

Az elkészült demóprogram megvalósítja a fenti algoritmust. Az alábbi képernyőképeken végiglapozható a demóprogram működése. Nem is az algoritmus megvalósítása a kihívás és a cél, hanem a folyamat lépésenkénti megjelenítése. Java swing grafikus felület készült el.

 

A demóprogram Start állapottal indul. Olyan a lépésenként tesztesetek sorozata, hogy a lottószelvény nem sikerül rögtön elsőre. Az egyik szám már előfordult korábban. A demóprogram Stop állapottal ér véget. A demóprogram pénztárszalagszerűen időnként jelzi, hol tart éppen. A demóprogram képes egymás után több lottószelvényt is előállítani és az emlékezete egyetlen szelvényre korlátozódik.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni. A Java EE szoftverfejlesztő tanfolyamunkon, a szakmai modul 33-40. óra Java Server Pages alkalmain már a program böngészőben futó változatát is el tudjuk készíteni.