Kölcsönös ajándékozás véletlenszerűen

A kölcsönös ajándékozás időről-időre több közösségben is felmerül. Munkahelyi környezetben és iskolai csoportokban is (például: Télapó, karácsony). Hagyományos megközelítésben így hangzik a szabály: „húzzunk neveket a kalapból”. Másképpen: mindenki 1 ajándékot ad, mindenki 1 ajándékot kap és a sorsolás véletlenszerűen történik.

Készítsünk Java programot, ami megoldja a kölcsönös ajándékozást véletlenszerűen!

A neveket tároljuk el szövegfájlban ( nevsor10.txt). Soronként egy nevet. Ha különböznek, akkor elegendő a keresztnév. A soroknak/neveknek különbözniük kell. Ha szükséges, akkor hozzáírjuk a vezetéknevet, a vezetéknév első betűjét vagy sorszámot. Ezt a program beolvassa és megjegyzi egy szöveg típusú generikus nevsorLista nevű indexelhető adatszerkezetben. A nevek eredeti sorrendje nem befolyásolja a kiválasztást, mert a neveket a program összekeveri (helyben, véletlenszerűen, a shuffle() metódussal). Adott elemszámú lista indexelhető nullától elemszám-1-ig ( size()-1-ig).

A szövegfájl olvasása, tartalmának betöltése során – az ékezetes karakterek miatt – előfordulhatnak karakterkódolási problémák. Ekkor használható a readAllLines() függvény túlterhelt változata esetén a Charset típusú második paraméter, például így: Charset.forName("ISO-8859-2"). A fájlkezeléshez kötelezően kivételkezelés is szükséges (ezt most nem részletezem).

1. megoldás

Az ajándékot adó-kapó párosokat a listában egymás mellett lévő i-edik (bal) és i+1-edik (jobb) nevek adják. Az adó az elsőtől az utolsó előttiig, a kapó a másodiktól az utolsóig léptethető. Kimarad az a pár, amikor az utolsó ad és az első kap. A lista indexei szerint az adók esetében a nulladik elemétől az utolsó előtti eleméig és a kapók esetében a lista első elemétől az utolsó eleméig jelenti a kiválasztást. Mindez könnyen megoldható for számláló ciklussal. A kimaradó pár ajándékot adó tagja a lista size()-1-edik eleme és kapó tagja a lista nulladik eleme. Ez a ciklus után egyszerű kiírással megoldható.

2. megoldás

A program átmenetileg megváltoztatja a listát: az utolsó elem után bővül az első elemmel ( nevsorLista.add(nevsorLista.get(0))). Ennek köszönhetően az ajándékot adó-kapó párosokat a listában egymás mellett lévő lévő i-edik (bal) és i+1-edik nevek adják. Most nem lesz kimaradó pár, mert a korábbi utolsó elem most az utolsó előtti elem és az utolsó elem most az első. Másképpen: mindenki ad és mindenki kap.

A megoldás Stream API-t használ. Először előállít egy olyan IntStream típusú folyamot, amiben az ajándékot adó és kapó párosok adó (bal) tagjainak sorszámát/indexét tartalmazza. Ezután ezt végigjárva összefűzi a szövegeket ( mapToObj()) úgy, hogy a páros kapó (jobb) tagja az adó tag rákövetkezője. Végül a program kiírja a összefűzött szövegeket ( forEach()) a konzolra. Ha a neveket tartalmazó listát használnánk később még valamire (azaz kellene az eredeti összekevert állapota), akkor érdemes aktiválni a megjegyzésbe tett utolsó utasítást.

Eredmény

A program konzolos/szöveges eredménye mindkét esetben azonos. Persze a nevek sorrendje különbözhet, hiszen az összekeverés minden futtatás esetén másképpen alakul(hat), mert véletlenszerű. Például:

Érdemes tesztelni és átgondolni, hogy mi történne, ha üres a fájl, üres a generikus lista, 1 név van, 2 név van, illetve nem szabadna ilyet, de mi történne azonos nevek esetén. Vajon különbözik/különbözne a fenti két megoldás eredménye? Miért?

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra Objektumorientált programozás és 37-44. óra: Fájlkezelés alkalmaihoz kötődik.

Kép élesítése effektus működése

Ismert számos képfeldolgozó, képjavító effektus. Az egyszerűbb effektusok elérhetők ingyenes web- és mobil alkalmazásokban, PowerPointban. Az összetettebb (művészi) effektusokhoz, szűrőkhöz már érdemes professzionális eszközt használni, ilyen például az Adobe Photoshop. Ezek a belépő szint képeffektusai kulcsszavakban: élesítés (sharpen), homályosítás (blur), elmosódás (gaussian blur), folyadékszerű rajz (liquid), olajfestmény (oil painting), öregítés (sepia), szürkeskála (grayscale).

Lássuk, hogyan valósítható meg Java programozási nyelven a kép élesítése!

A kép adatszerkezete

Adott egy képfájl. Formátuma a tipikus, feldolgozhatók (JPG, GIF, PNG, WebP) egyike. Ezek rasztergrafikus képformátumok. Lekérdezhető a dimenziója: ez képpontban (pixelben) jelenti a kép szélességét (width) és a kép magasságát (height). A vászontechnika meghatározza a kép origóját (0, 0) és a képpontok kétdimenziós koordinátapárját. A kép origója a bal felső sarokban van. A kép oszlopai (column) jobbra haladva növekvő módon, a kép sorai (row) lefelé haladva növekvő módon számozottak. Egy pixel koordinátapárja (c, r) alakban írható le. Minden pixel három szín kombinációjaként áll elő (r, g, b). Másképpen: a piros, zöld és kék összetevők aránya alapján meghatározott. A tipikus színmélység alapján a színek külön-külön 256-félék lehetnek, és ezeket 0-tól 255-ig egész szám képviseli. A 0 az adott szín hiányát, a 255 a szín teljes intenzitását jelenti.

A kép élesítéséhez használható szűrőmátrixok

A kép élesítése során szűrőt alkalmazunk a kép belső pixeleire. A kép 4 szélén lévő pixeleket nem változtatjuk. Többféle szűrő közül választhatunk, íme két példa:

A három színösszetevőre külön-külön kell alkalmazni a szűrőt. Az aktuális pixel – amire alkalmazzuk a szűrőt – a 3×3-as mátrix középső eleméhez igazítva szorzóértékeket tartalmaz. A konkrét eset: az a mátrix esetén az 5 érték a 2. sor 2. oszlopában helyezkedik el; ennek a közvetlen szomszédos pixeleire a -1 értékek, átlós szomszédaira pedig a 0 értékek vonatkoznak. Eredményül a szűrt pixel színeit kapjuk meg külön-külön. Ha a kapott értékek kisebbek 0-nál, akkor nullázzuk őket. Ha a kapott értékek nagyobbak 255-nél, akkor beállítjuk azokat 255-re. Az a szűrőmátrix kevésbé élesít, a b szűrőmátrix erősebben élesít.

Természetesen sok más képélességhez köthető szűrő is van még. Olyanok is vannak, ahol nem csak a közvetlen szomszédos pixeleket veszi figyelembe az algoritmus. További kulcsszavak a témához kötődően: digitális képfeldolgozás, lokális operátor, korreláció, konvolúció, átlagszűrő, mediánszűrő, zajszűrő, Laplace-szűrő.

A kép élesítését megvalósító Java forráskód-részlet

A fenti a mátrixot a SHARP_FILTER konstans kétdimenziós tömb tárolja. A paraméterként átvett BufferedImage típusú img1 objektum kép pixeleinek végigjárását ütközőként segíti a w szélesség és h magasság. A data egydimenziós tömb sorfolytonosan tárolja a kép pixeleit. Az if elágazó utasítás igaz ága kezeli a kép 4 szélét (változatlanul hagyott másolt színek). Az if hamis ága a belső pixelekre alkalmazza a szűrőmátrixot. A red, green, blue változók tartalmazzák az aktuális pixel színeit, amelyekbe az eredeti pixelre alkalmazott szűrő által szorzott értékek kerülnek, „belekényszerítve” a 0-255 zárt intervallumba. Végül az eredményül visszaadott img2 kép pixelei kerülnek beállításra. Az alábbi sharpenEffect() függvény mindezt megoldja az alábbiak szerint:

A metódus meghívása a fájlkezelést is tartalmazó vezérlőmetódusban például így történhet:

Az eredeti és élesített képek összehasonlítása

A bal oldalon az eredeti kép, a jobb oldalon az a mátrixszal élesített kép látható:

A bal oldalon az eredeti kép, a jobb oldalon a b mátrixszal élesített kép látható:

A látvány alapján fontos kiemelni, hogy másképpen is lehet összehasonlítást végezni. Például: színtérkép, színmélység, színösszetevők aránya (hisztogram).

Ötletek továbbfejlesztésre

  • Konzolos program átvehetné parancssori paraméterként a szűrőmátrixot, vagy annak nevét, kódját, egyes értékeit.
  • Grafikus felületű programban vízszinten JScrollBar  GUI komponens(ek) segítségével paraméterezhető, kigörgethető lehetne a szűrőmátrix szélsőértéke(i).
  • A fenti effektek a kép összes pixelét érintik. GUI felületen megoldható az is, hogy ki tudjuk jelölni a kép egy-egy részét, amire alkalmazni szeretnénk az effektek. Ez a kijelölés többféle lehet, például téglalap alakú, szabálytalan, átlátszó, adott vagy adotthoz hasonló árnyalatú színű, vagy valaminek a körvonala.
  • Egy mappában lévő összes képre alkalmazható effekt, előnézettel, képfájlonként megerősítéssel, jóváhagyással, csoportos kijelöléssel, szűrővel.
  • Szürkeskála effekt megvalósítása és tesztelése az alábbi forráskód-részlettel:
  • Homályosítás effekt megvalósítás és tesztelése a 4 élszomszéd színeinek átlagolásával, így:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb GUI programot tervezni, kódolni, tesztelni, kiegészítve a 37-44. óra Fájlkezelés alkalmaihoz kötődő példaprogramokkal.

Galéria véletlen sorrendben

Adott egy mappában lévő sok-sok képfájl, többféle formátumban, kiterjesztéssel. A feladat az, hogy időzítve jelenítsük meg ezeket a képeket véletlen sorrendben saját fejlesztésű Java program segítségével. A tervezés során áttekintünk többféle lehetőséget. Bemutatjuk a megoldáshoz szükséges lépéseket és a program működését.

A program tervezése

A szükséges bemeneti adatok

  • Egy mappa, abszolút vagy relatív útvonal, ahol a képfájlok megtalálhatók. A mappa átvehető a program paramétereként (ha parancssorban meghívva átadjuk) vagy lehet az aktuális mappa (ahonnan a programot jar fájlként elindítjuk). A program a mappában közvetlenül megtalálható képeket olvassa be. Az ott található almappákba nem megy bele.
  • A képfájlok különböző kiterjesztéseit tárolni kell. Többféle is lehet, így ehhez szükséges alkalmas adatszerkezet. A listában nem szereplő kiterjesztéssel rendelkező fájlok nem kerülnek feldolgozásra.
  • Érdemes a képfájlokat egy lépésben betölteni a memóriába. Így a program takarékos erőforrásként bánik a tárhellyel (merevlemez, pen-drive, SSD, hálózati meghajtó). Csak egyszer dolgozza fel (olvassa végig) a mappát. Feltételezzük, hogy a képfájlok beférnek a memóriába.
  • A program teljes képernyős, amiből elérhető a rendelkezésre álló terület mérete, ahol megjeleníthetők a képek. A program a betöltött képfájlok méreteihez is hozzáfér. Ez a méret kétféle lehet: bájtban kifejezhető a képfájl elfoglalt tárhelye, illetve pixelben kifejezhető a képfájl dimenziója (másképpen a megjelentéséhez szükséges terület mérete a képernyőn).

Hogyan működik a program?

  • Egyszerre egy kép jelenik meg. Időzítő befolyásolja a képfájlok közötti váltást. Meghatározza, hogy a képfájlok meddig látszanak (másképpen: eltelt idő, késleltetés, várakoztatás). A swing GUI-hoz tartozó időzítőt kell hozzá használni.
  • A program alkalmazkodik a képernyő, kijelző felbontásához, képarányához. A program végtelenítve működik, Alt + F4 billentyűkombinációval lehet kilépni belőle.
  • A képfájlok megjelenítésük során optimálisan, dinamikusan kitöltik a rendelkezésre álló téglalap alakú területet. A túl kicsi képeket nagyítani kell. A túl nagy képeket kicsinyíteni kell. Mindezt úgy, hogy a képarányt (aspect ratio) meg kell tartani, hogy a képek ne torzuljanak el. Az alábbi három példa balról-jobbra mutatja az optimális kitöltést, illetve azt a két esetet, ami akkor történik, amikor a kép méretéhez képest a megjelenítésre használható terület túl magas vagy túl széles:
  • A galériába tartozó képek közötti véletlen sorrendet meg kell oldani. A program a memóriába betöltött képek sorszámai alapján valósítja meg a véletlenszerű kiválasztást. A sorszámok összekeverednek. Egymás után nem jöhet ugyanaz a kép többször. Ha a képek „elfogynak”, akkor a program végtelenített működése szerint a képek sorszámai újra összekeverednek és „lejátszásra kerülnek”.

A program megvalósítása

A mappát a java.io csomag File osztályából létrehozott folder objektum tárolja (a "./"  szövegliterál jelöli az aktuális mappát). A feldolgozandó képfájlok kiterjesztéseinek listáját egy dinamikus tömbből létrehozott generikus lista oldja meg: ArrayList<String> imageFileExtensionList=new ArrayList<>(Arrays.asList("JPG", "JPEG", "PNG", "GIF")). Egy képfájl memóriabeli tárolását a  java.awt.image.BufferedImage típus valósítja meg, amelyekből szintén generikus lista épül: ArrayList<BufferedImage> imageList. A grafikus felhasználói felülethez tartozó javax.swing csomagbeli Timer osztály szükséges, például 2 mp-es várakoztatás és eseménykezelés: timer=new Timer(2000, (ActionEvent) -> { showRandomImage(); }). A GUI JFrame leszármazott keretobjektum. A grafikus felhasználói felület a teljes képernyőt elfoglalja: setExtendedState(MAXIMIZED_BOTH) és setUndecorated(true). A keretre egyetlen JLabel típusú, fekete hátterű lbImage objektum kerül, az alapértelmezett határmenti elrendezésmenedzser közepére (vízszintesen és függőlegesen egyaránt). A képfájlok sorszámai (a későbbi véletlen kiválasztáshoz) az imageIndexList generikus listába/kollekcióba kerülnek. Az index változó jelöli az aktuális, memóriába betöltött képfájl sorszámát, ami kezdetben nulláról indul.

A képfájlok betöltése az alábbiak szerinti:

A fájlok kiterjesztésének szűrése a FileFilter interfész accept() metódusának megvalósításával történik. A fenti forráskódban mindez tömör, lambda kifejezéssel (művelettel) valósul meg. A fájlszűrőn az képfájl megy át, aminek a nagybetűssé alakított kiterjesztését tartalmazza az  imageFileExtensionList kollekció. Az i-edik képfájl memóriába való betöltését az ImageIO osztály statikus read() függvénye oldja meg. A képfájlok sorszámainak véletlen összekeverése kezdetben megtörténik: Collections.shuffle(imageIndexList). A fájlkezelés miatt kötelező kivételkezelést most – itt a szakmai blogban – nem részletezzük.

Az időzítő eseménykezelése, a 2 másodpercenkénti képváltás így valósul meg:

A program alábbi metódusa felel a képarányhoz kötődő műveletekért:

A program tesztelése

  • Érdemes lehet tesztelni nem ajánlott (rossz) megoldásként azt, hogy a program az időzítőnek megfelelően, dinamikusan olvasná be a képfájlokat, amivel lényegesen kevesebb memóriát igényelne.
  • Van-e reális korlát arra, hogy mennyi, mekkora képek „férnek el” a memóriában?
  • Hogyan befolyásolja a képfájlok száma és az általuk elfoglalt tárhely a program indulását?
  • Mi történik, ha nincs megfelelő kiterjesztésű képfájl a mappában? És ha több 1000 kép van benne?
  • Hogyan jelennek meg (megjelennek-e) az animációt tartalmazó képfájlok? Például a GIF képformátum nem csak statikus egyetlen képet tartalmazhat, hanem lehet animált is.
  • Teljesen megvalósul-e a reszponzivitás? Ha igen, mi indokolja? Ha nem, miért nem és hogyan lehetne megoldani?

Ha átmenetileg kikapcsoljuk a teljes képernyős megjelenítést, akkor könnyen tesztelhetővé válik a megvalósuló reszponzivitás. Másképpen a program dinamikusan alkalmazkodik a rendelkezésre álló (rajzolható) terület méreteihez (szélesség és magasság):

A program továbbfejlesztési lehetőségei

  • A program rekurzívan bejárhatná a folder által megjegyzett útvonalból kiindulva a teljes (al)mappaszerkezetet.
  • A program paraméterezhető lehetne a képfájlok kiterjesztéseivel. Akár konfigurációs fájlból is beolvashatná az imageFileExtensionList adatszerkezetet, például XML, JSON formátumban is.
  • A program ellenőrizhetné, hogy a mappában lévő összes kép befér-e a memóriába. A program kezelhetne ehhez kötődően többféle limitet: például az első 100 db képet töltené be, és/vagy csak annyi képet tölt be, ami belefér például 64 MB-ba.
  • A program mutathatná folyamatindikátorral induláskor a képfájlok betöltését. Vagy betölthetné például az első 5 db-ot és háttérszálon a többit, amíg az első 5-öt „lejátssza”.
  • Ha például a program 10 képet tölt be mappában lévő képfájlokból, akkor ezek 0-tól 9-ig sorszámozódnak. A sorszámok összekeverve következnek. Ha az első menetben az utolsó kép sorszáma például a 7 volt, akkor a következő ismétlődő menet nem kezdődhetne 7-tel.
  • A programból ki lehetne lépni az Esc billentyűvel is. KeyListener interfésszel megoldható.
  • A program kezelhetne egyéb képfájlformátumokat is: például animált GIF, statikus WebP, animált WebP.
  • A program könnyen kiegészíthető prezentációk diáinak időzített/felülbírált megjelenítésére.
  • A program által beolvasott képfájlokból generálható PDF fájl is (rácsos sablonnal, például 6 db kép laponként). A feldolgoztt mappában lévő képfájlok könnyen feltölthetők FTP szerver adott mappájába, átméretezhetőek csoportosan, elküldhetők nyomtatási sorba is.
  • Érdemes megismerni a JDK-n kívüli egyéb, képfájlokat kezelő osztályok, csomagok funkcióit, például: OpenIMAJ, TwelveMonkeys ImageIO.
  • A swing-es felület kiegészíthető mappatallózással, egyéni fájl(típus)szűrőkkel, paraméterezhető lehet a véletlenszerű kiválasztás algoritmusa, változtatható az időzítés késleltetése.
  • Mivel a program teljes képernyős, így elrejthető az egérmutató.
  • A képek „lejátszásából” lehetne generálni animált GIF-et.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb animációs, szimulációs programot tervezni, kódolni, tesztelni.

Beszámoló: it-tanfolyam.hu STEM nyári tábor 2023

A STEM mozaikszó eléggé közismert: a tudományos-technológiai tudományágakat (természettudomány, technológia, mérnöki tudomány és matematika) foglalja egybe, interdiszciplináris megközelítésben. A STEM területén való elmélyedés során a hangsúly nem a mit tanulunk/tanítunk, hanem inkább a hogyan tanulunk/tanítunk. Nem azonnal ad kézzel fogható válaszokat, de kitartó próbálkozással – saját élménnyel – elérhető az eredmény.

Az it-tanfolyam.hu oktatói csapata 2023-ban először hirdetett STEM nyári tábort. Erről számolunk be röviden ebben a blog bejegyzésben. Tervezzük, hogy a jövőben rendszeresen fogunk szervezni STEM nyári tábort.

A STEM nyári tábor koncepciója

2023. nyarán 4 turnusban hirdettünk programozás fókuszú STEM nyári tábort:

  • 1. turnus: július 3-7-ig,
  • 2. turnus: július 10-14-ig,
  • 3. turnus: július 17-21-ig,
  • 4. turnus: július 24-28-ig.

Előzetes tudás- és igényfelmérést végeztünk, így alakítottunk ki 3 db csoportot, ezek: Java kezdő, Python kezdő, Python haladó. A kiinduló célcsoportot tanfolyamaink karrierváltó hallgatóinak gyermekei jelentették, akik mellé toboroztunk még. A korosztály a 16-20 éves diákok voltak a 11-14. évfolyamról. A 11-12. évfolyamosok közül sokan informatika, digitális kultúra érettségi előkészítő fakultációra jelentkeztek, jártak, járnak és ebből érettségiznek/érettségiztek. A már korábban érettségizett 13-14. évfolyamosok körülbelül fele az OKJ utód szakmajegyzékhez tartozó szakképzésben tanult.

Mindegyik turnus azonos tematikával valósult meg. Turnusonként 3 db párhuzamos, 10-12 fős csoportokat indítottunk. Voltak közös elméleti programok, szakmai kirándulás, illetve külön-külön Java és Python nyelven megvalósuló gyakorlati programok, valamint projektbemutatóra is sor került. Igyekeztünk érinteni sokféle STEM területet: fizika, kémia, biológia, csillagászat, térinformatika, mesterséges intelligencia, szimuláció, játékprogramok, matematika, orvostudomány; mindegyiket a programozáshoz kapcsolva. Végeztünk tervezést, kódolást, tesztelést is. Belefért némi pályaorientáció is.

A STEM nyári tábor órarendje

Turnusonként 4 oktató kollégával és vendégelőadókkal hétfőtől-péntekig minden nap 8 és 18 óra között biztosítottuk a jelenlétet, felügyeletet. 40 órában szakmai programokat (elmélet+gyakorlat) kínáltunk. Reggelenként és késő délutánonként 1-1 órában offline, egyéni vagy csoportos játékok voltak kipróbálhatók. Ez mindösszesen 50 órát jelentett. Délelőttönként 20, 30 és 60 perces programokat terveztünk, délutánonként 120 és 240 perceseket. Szerdára szakmai kirándulást, gyárlátogatást ütemeztünk be. Íme az órarend áttekintő formában:

Íme az órarend naponként lapozható formában, benne a részletekkel:

Előzetes tapasztalataink

Előzetes tapasztalatainkat több forrásból merítettük, inspirálódtunk:

Köszönetnyilvánítás

Köszönjük résztvevő diákjainknak az aktivitást, a lelkesedést, a sok-sok elgondolkodtató kérdést, az offline kapott/szerzett élményeket, a pozitív visszajelzéseket.

Szeretnék köszönetet mondani együttműködő partnereinknek: LEGO Manufacturing Kft., REGIO Játékkereskedelmi Kft., Revolt Kereskedelmi Kft., Pannon Kincstár Humán Szakképző Központ.

Végül szeretnék köszönetet mondani minden oktató kollégámnak konstruktív részvételüként, kitartásukért a projekt teljes életciklusában. A tervezési, a szponzorszerző, a promóciós és a megvalósítási szakaszokban egyaránt 2023. április elejétől július végéig. Kiemelem korábbi és az aktuális projekthez kötődő tananyagfejlesztési tevékenységüket. A sikeresen lezárt projektünket augusztusban kipihenjük. 😉

Egy matematika érettségi feladat megoldása programozással 2023

érettségi logó

érettségi logó

A 2023-as középszintű matematika érettségi feladatsorból az 5. feladat alkalmasnak bizonyult arra, hogy a programozás eszköztárával oldjuk meg. Rögtön többféleképpen is, hogy összehasonlíthatóak legyenek egymással. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor letölthető az oktatas.hu-ról.

5. feladat

Adja meg a 420 és az 504 legnagyobb közös osztóját! Megoldását részletezze!

Íme kulcsszavakban, mit érdemes átgondolni a megoldás előtt: számelmélet alaptétele, prímfelbontás (prímtényezős felbontás, faktorizáció), osztópár, prímek szorzata, prímtényezők szorzata, kanonikus alak, euklideszi algoritmus.

1. megoldás

Az első megoldás az euklideszi algoritmus alkalmazása. A metódus paraméterezhető. Pozitív paramétereket vár és képes kiírni a konzolra a két szám legnagyobb közös osztóját. A módszer alapötlete: a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. Ezzel csökken a nagyobb szám, így a cserék ismétlésével egyre kisebb számokat kapunk, amíg a két szám egyenlővé nem válik. Ez az eddigi számpároknak, így az eredeti számpárnak is a legnagyobb közös osztója. Az eredményt az utolsó nem nulla maradék while(m!=0) adja meg int lnko=b;. Az algoritmus lépésszáma csökkenthető, ha a>b, de ennek ellenőrzése nélkül is működik. Mivel a feladat kéri a megoldás részletezését, így aktiválva a megjegyzésbe tett forráskódokat, a kiírásból könnyen érthető, mi és hogyan történik:

A konkrét esetben a metódus eredménye: lnko (420; 504) = 84. Nagyobb számok esetében „beszédesebb” a program kiírása, több lépésben írja ki a megoldáshoz vezető utat, ezért érdemes többféle paraméterrel is tesztelni a metódust.

2. megoldás

A második megoldás a prímtényezős felbontásokon alapul. Mindkét szám esetén gyűjtsük össze listában ezeket, majd vegyük a két lista közös részét. (Ha lista helyett halmazok lennének, akkor metszet programozási tétel lenne.) A generikus listákba prímszámok kerülnek és bármelyik többször is előfordulhat. (Ezért most a leghosszabb közös részsorozat(ok) előállítása szükséges.) Addig osztjuk a számot 2-vel, amíg lehet, utána következik a többi prímosztó, amíg vannak. Érdemes több metódusra szétosztani a megoldást, mert jóval áttekinthetőbb és karbantarthatóbb Java forráskódot eredményez. A beszédes változó, objektum és metódusnevek is segítenek a megértésben. A második megoldás természetesen ugyanazt az eredményt adja, mint az első megoldás. Aktiválva a megjegyzésbe tett forráskódokat, a kiírásból most is könnyen érthetővé válik (középiskolás matematikaóra-szerűen), mi és hogyan történik:

Kanonikus alakban: 420 = 22 * 3 * 5 * 7, 504 = 23 * 32 * 7, így lnko (420; 504) = 22 * 3 * 7. Azaz összeszorozzuk a közös prímtényezőket az előforduló legkisebb hatványon.
A megoldás erősen épít a generikus kollekciók esetén jól használható Stream API lambda kifejezéseire. Ezeket most nem részletezem, helyette ajánlom a szakmai blogból a lambda kifejezés címkét.

Érdemes átgondolni

  • Nagy prímszámok esetén az euklideszi algoritmus nem hatékony. Az algoritmus végrehajtása kifejezetten lassú például a Fibonacci-számok esetén. A prímtényezőkre bontás feltételezett bonyolultságát számos kriptográfiai algoritmus használja ki. Vannak különleges esetek is, például: egyforma számok, az egyik szám 1, a két szám egymás többszöröse.
  • A feladat nem kérte a legkisebb közös többszörös meghatározását, de ha tudjuk a lnko(a, b)-t, akkor abból könnyen adódik a lkkt(a, b)=a*b/lnko(a, b).
  • A legnagyobb közös osztó tulajdonságait megismerve az euklideszi algoritmus könnyen optimalizálható. Számos esetben ellenőrzést végezhetünk, illetve triviális alapesetek is vannak. Létezik kiterjesztett euklideszi algoritmus is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 9-12. óra: Metódusok, rekurzió, valamint 17-28. óra: Objektumorientált programozás alkalmaihoz kötődik.