Péntek 13

Péntek 13

Péntek 13Sokan szerencsés vagy balszerencsés napnak tartják a péntek tizenharmadikát. Évente 1-2-3 alkalommal megtörténik, hogy a hónap 13. napja péntekre esik (minden vasárnap kezdődő hónapban). A hónap 13. napja valamivel valószínűbben péntekre esik, mint a hét bármely más napja. Átlagosan 212,35 naponként fordul elő péntek 13. Előfordulhat két egymást követő hónapban is, de akár 14 hónap is eltelhet két péntek 13 között.

A nap említése sok helyen előfordult: regényekben, filmekben, híres emberek születése vagy halála is esett péntek 13-ra. Átlag alatti közlekedési baleset szokott előfordulni ezeken a napokon – talán mert az emberek óvatosabbak. Kimutatható összefüggést/korrelációt, „péntek 13 hatást” figyeltek meg a tőzsdén is.

Hasznos lehet, ha írunk egy Java programot, amely néhány egymást követő év esetén listázza a konzolra azokat a hónapokat, amikor 13-a péntekre esik.

Tervezés

Legyen egy listFriday13(year) eljárás, amely a paraméterként átvett évben kiírja azokat a hónapokat a konzolra, amelyekben 13-a péntekre esett/esik. Például: 2019: szeptember, december. A hónapok nevei magyar nyelven jelenjenek meg. Az adott év hónapjain végighaladó ciklus legyen hatékony. Optimalizáljunk a ciklus lépésszámára! A ciklus álljon le, ha már talált 3 hónapot (mivel nem lehet több).

1. megoldás

A megoldást a tematika Tömbök témakörében az alábbiak szerint készíthetjük el. Előismeretek: változók, operátorok, ciklusok, programozási tételek, metódusok, tömbök, String összehasonlítás. Az ismert öröknaptár algoritmusokból implementáljuk az egyiket, például:

A listFriday13v1(year) eljárásban az elemi döntés egyszerű: dayOfWeek(year, month, 13).equals("Friday"). Épít az öröknaptárt megvalósító – saját – szöveget visszaadó függvényre. A függvény az algoritmus szerinti kódok előállításához ( centuryCode, monthCode, dayCode) felhasználja a szökőév ( isLeapYear(year)) függvényt, valamint két – konstansnak is tekinthető – névtelen tömböt ( new int[], new String[]).

2. megoldás

A megoldást a tematikában Objektumorientált programozás témakörében az alábbiak szerint készíthetjük el. Felhasználjuk eddigi ismereteinket és a JDK beépített dátumkezelő (tároló, formázó) funkcióit (osztályok, interfészek, konstansok, felsorolások).

A listFriday13v2(year) eljárás a Calendar absztrakt osztály konstansait használja fel az elemi döntéshez: date.get(Calendar.DAY_OF_WEEK)==Calendar.FRIDAY. A dátumot a GregorianCalendar konstruktora példányosítja és figyelni kell a 0-bázisú hónapkezelésre. A dátum formázása során ( dfMonth) beállítjuk a megfelelően paraméterezett ( "hu") Locale típusú objektumot és a hónap hosszú nevét kérjük ( "MMMM"). A metódus generikus listába gyűjti a kiválasztott hónapok nevét, amiket végül a String.join() függvény fűz össze a megjelenítéshez.

Eredmény

A vezérlésben egy ciklus 2019-től 2038-ig szervezve az alábbi eredményt adja:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik a fentiek szerint: 13-16. óra: Tömbök alkalom, illetve 17-28. óra: Objektumorientált programozás alkalom.

Kígyókockát készítünk

Kígyókocka

KígyókockaA kígyókocka (snake cube, chain cube) 27 egyforma méretű, egymáshoz képest mozgatható/forgatható kockából áll. A kockákat összeköti egy rugalmas fonal/gumi. Az első és az utolsó kocka egy-egy lapján egy-egy lyuk van. A közbenső kockák hat lapjából kettő lyukas. Fából és műanyagból is készülhetnek. Általában kétféle színnel színezettek a kockák. A cél, hogy a 27 kockát kígyózva „összehajtogatva” a kígyó (lánc) összeálljon egy nagyobb 3x3x3 méretű kockává.

A színek – a játék gyártóitól függően – nehézségi szinteket jelölhetnek (zöld, kék, piros, narancs, lila). Léteznek könnyebben és nehezebben megoldható kígyókockák. Előbbieknél többször fordul elő két egymással szemben lévő lyukas lap a közbenső kockákon, utóbbiaknál gyakoribbak az egymással szomszédos lapokon lévő lyukak. Másképpen: előbbiben több a három hosszú egyenes rész, utóbbi szinte állandóan tekereg. Általában a kocka egyik csúcsából kezdjük a megoldást, de az igazán nehéz játékok esetében a kígyó indulhat akár a kocka egyik lapjának (3×3) középső kockájától is.

Vannak olyan kígyókockák, amelyeknek több megoldása is van, azaz többféleképpen is összeállítható kockává. Ezek részletes ismertetése (típusok, gyártók, színek), a megoldások (statikusan és dinamikusan), irányokat mutató jelölésrendszer (Front, Left, Up, Back, Right, Down) elérhető Jaap Scherphuis – holland puzzle rajongó – weboldalán: Jaap’s Puzzle Page.

Kígyókocka

Olyan Java programot készítünk, amely véletlenszerű kígyókockát állít elő.

Tervezés

Szükséges egy háromdimenziós tömb adatszerkezet a kocka tárolására. Több okból is hasznos, ha a tömb mérete 5x5x5. Egyrészt így indexek 0-tól 4-ig futnak és a tömb közepén lévő 3x3x3-as kocka elemei kényelmesen – mátrixszerűen – indexelhetők 1-től 3-ig. Másrészt a tömb közepén lévő 3x3x3-as kocka minden elemére igaz, hogy egységesen van 26 db érvényesen indexelhető szomszédja. A 125 tömbelemből a széleken lévő 98 elem negatív számokkal feltölthető.

A szokásos i, j, k egységvektor rendszerben (koordináta-rendszerben) gondolkodva, i és j a képernyő síkját, k pedig a mélységet jelenti. A k-val 0-tól 4-ig „szeletelve” a tömböt, öt db négyzetet/mátrixot kapunk az alábbiak szerint. A színes tömbelemek negatív számokkal kerülnek feltöltésre, a kígyó útját határolják mindhárom irányból:

Kígyókocka tervezés

A belül lévő – fehér színű – 3x3x3-as kocka/tömb elemeit kezdőértékként célszerű 0-val feltölteni.

A szomszédos kockák kiválasztása során csak a középen lévő kocka 6 db lapszomszédját kell figyelembe venni. A középen lévő (a következő ábrán nem látszó) kocka három tengely szerinti 2-2-2 szomszédos kockája különböző színekkel jelölt.

Kígyókocka tervezés

Él- és csúcsszomszédság esetén nem tud tekeredni a kígyó. A forduláshoz/tekeredéshez legalább 3 – a kígyóban egymás utáni – kocka szükséges. Az aktuális kockának – pozíciójától függően – legfeljebb 6 lapszomszédja lehet. Ezt csökkenti, ha a kocka valamelyik csúcsban helyezkedik el, illetve menet közben is – ahogyan egyre hosszabb lesz a kígyó – folyamatosan csökken a még szabad elemek száma.

A megoldás során a belül lévő – fehér színű – 3x3x3-as kocka/tömb elemeit kell sorszámozni 1-től 27-ig, jelölve ezzel a kígyó útját. A kezdetben 0-val jelölt szabad elemek végül elfogynak.

Megállapodunk abban, hogy a kígyó az útját az (1, 1, 1) pozícióban kezdi és az 1 sorszámot kapja. Addig kell újabb szomszédos kockákat – egyesével haladva – kiválasztani módszeresen vagy véletlenszerűen próbálkozva, vagy akár visszalépéses algoritmussal is, amíg mind a 27 kiválasztásra kerül.

Megvalósítás

Létre kell hozni a háromdimenziós tömböt példányváltozóként:
int[][][] cube=new int[5][5][5];

A cubeInit() metódus kezdetben feltölti a tömb elemeit. A széleken lévő elemekbe különböző negatív értékek kerülnek, hogy jól megkülönböztethető legyen, melyik ciklus melyik pozíciókért felel. Másképpen is lehetne: például kezdetben minden elem -1, utána a belül lévők felülírhatók 0-val.

Hasznos a cubePlot() metódus, amellyel megjeleníthetők a konzolon a tömb elemei (állapota):

A getNextNeighbour() függvény egydimenziós tömbként ( int[]) visszaadja a paramétereként átvett – x, y, z koordinátával jelölt – kocka egyik kiválasztott szomszédját, amely a kígyó útját jelöli. A kiválasztás történhet módszeresen vagy véletlenszerűen próbálkozva, vagy akár visszalépéses algoritmussal is. A metódus forráskódját most nem részletezem. A metódus felelős a kígyó helyes útvonaláért, azaz a kiválasztás során a kígyó nem rekedhet meg zsákutcában, másképpen nem haraphatja meg saját magát.

A vezérlést a run() metódus végzi el az alábbiak szerint:

Addig fut a ciklus, amíg a kígyó nem tölti ki a 3x3x3-as kockát (másképpen: amíg a kígyó nem éri el a maximális hosszúságot). A tömb állapotát kezdetben és lépésenként is kiíratja a vezérlő metódus a konzolra.

Konzolos eredmény

A konzolos eredmény előállításánál fontos volt, a tömb változásait tudjuk követni. Az összes negatív szám elhagyható lehet a kiírásból, ha meggyőződtünk az implementált algoritmus helyes működéséről. Átlátva a problémát, a megoldás könnyen elállítható egy grafikus és/vagy egy irányokat mutató jelölésrendszer szerint is, például:

Kígyókocka tervezés

Hivatkozások

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik. Több alkalommal is tudunk ezzel a feladattal foglalkozni, attól függően, hogy a getNextNeighbour() függvény működését hogyan tervezzük és implementáljuk:

  • A 13-16. óra: Tömbök témakör esetén a szomszédos kockák közül módszeresen – azonos sorrendben haladva a legfeljebb 6 lehetséges szomszéd közül – választjuk ki mindig az elsőt. Ekkor mindig ugyanazt az egyetlen helyes megoldást kapjuk meg.
  • A 17-28. óra: Objektumorientált programozás témakör esetén atipikusan a kivételkezelést használhatjuk vezérlésre úgy, hogy a lehetséges szomszédos kockák közül mindig véletlenszerűen választunk. Ekkor a kígyó önmagába harapását úgy előzzük meg, hogy tömb túlindexelésekor keletkező kivételt benyeljük és újrakezdjük a feladatot mindaddig, amíg találunk egy olyan megoldást, aminek lépései közben nem keletkezik kivétel.
  • Az orientáló modul 9-12. óra: Mesterséges intelligencia témakör esetén véletlenszerű kocka kiválasztási stratégiával rendelkező visszalépéses algoritmust specifikálhatunk és implementálhatunk. Ez lényegesen összetettebb feladat és mindig helyes megoldást ad több lehetséges megoldás közül.

Hány éves a kapitány?

Hány éves a kapitány?

Hány éves a kapitány?A problémamegoldó, logikus gondolkodásra nevelő képzések anyagában, illetve felvételi feladatsorokban is sokszor megtalálható – többféle változatban is.

Lássunk egyet a népszerű „Hány éves a kapitány?” típusú feladatok közül!

Három elefántot kell berakodnunk – szólt a hajóskapitány az első tiszthez.
És hány évesek ezek az elefántok? – kérdezte az első tiszt.
Mindegyik elmúlt már két éves és életkoraik szorzata 2450 – volt a válasz.
Hát életkoraik összege?
Azt fölösleges elárulnom, mert abból még nem tudnád megállapítani életkorukat – mondta a kapitány, majd hozzátette: Az egyikük idősebb nálam.
Akkor már tudom, hogy hány évesek az elefántok – mondta az első tiszt.

Feltéve, hogy tényleg tudta; … hány éves a kapitány?

Hogyan használhatnánk a feladat megoldásához programozáshoz kötődő ismereteinket?

Állítsunk elő olyan három szorzótényezőt, amelyek szorzata 2450 és egyben írassuk ki az összegüket is a konzolra!

Az i, j, k a három elefánt életkorát jelöli. Mivel mindegyik elmúlt két éves (és feltételezzük, hogy életkoraik egész számmal kifejezhetők), így i=3-ról indul. Az elefántok lehetnek egyidősek, ezért j=i-ről és k=j-ről indul. Nincs kizárt életkor, így a változók léptethetők egyesével. Az i, j, k monoton növekvő sorozatot alkot, ezért a kiírásban nem lesznek olyan sorok, amelyek csupán a szorzótényezők sorrendjében térnek el. Durva felső becslés a 100, hiszen az elefántok általában 60-70 évig élnek. Eredményül ezt kapjuk:

Az eredményből milyen következtetés(eke)t lehet levonni és mi a megoldás?

Az egyszer előforduló összegeket ki kell zárni, mert abból az első tiszt tudná az elefántok életkorát. Többször előforduló összegként marad a 64. Tehát az elefántok lehetnek 5, 10, 49, illetve 7, 7, 50 évesek. Mivel a kapitánynál idősebb az egyik elefánt, így a kapitány nem lehet 48 éves vagy fiatalabb (mert ekkor nem lenne egyértelmű az életkora), illetve nem lehet 50 éves vagy idősebb (mert ekkor nem lenne nála idősebb elefánt). Tehát a kapitány 49 éves.

(Másképpen megközelítve: a 2450 prímtényezős felbontása 2*52*72, amiből ugyanezekre a következtetésekre juthatunk.)


A feladat további változatai

  • Egy hajó hosszának, az árbóc magasságának, a kapitány kisfia életkorának és a kapitány életkorának szorzata 303335. Hány éves a kapitány?
  • A kapitány most kétszer annyi idős, mint a hajója volt akkor, amikor a kapitány kétszer volt annyi idős, mint most a hajója. A kapitány és a hajója összesen 70 éves. Hány éves a kapitány?
  • A Fekete Kalóz néven elhíresült kalózkapitány egyik sikeres kalandja után kiszámíttatta saját maga és kisfia életkorának, valamint hajója hosszának a szorzatát. Az eredmény 26 159 lett, amelyet mint szerencseszámot egy medálra vésetett és mindig a nyakában hordott. Hány éves a kapitány? (A hajóhosszt méterekben mérték, és a mérőszám egész szám!)
  • Te vezeted az utasszállító repülőt. Budapesten felszáll 11 utas. Bécsben leszáll 5 és felszáll 9. Párizsban 1 kivételével mindenki leszáll. Hány éves a kapitány?
  • A kapitány hajója most 40 éves. Kétszer annyi idős, mint amennyi a kapitány volt akkor, amikor a hajó annyi idős volt, mint a kapitány most. Hány éves a kapitány?

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánlott irodalom

Aki kedvet kapott és beszerezne néhány könyvet – tele érdekes, gondolkodtató, kreatív, logikai feladatokkal – ajánlom az alábbiakat:

  • Katona, R. (szerk): Logikai egypercesek – az elme játékai, 2. kiadás, DFT-Hungária Könyvkiadó, Budapest, 2006, ISBN 963 9473 55 3
  • Róka, S.: 2×2 néha 5? – Paradoxonok, hibás bizonyítások, Tóth Könyvkereskedés és Kiadó Kft., Debrecen, 2008, ISBN 963 5965 24 3
  • Károlyi, Zs.: Csak logIQsan!, 2. javított kiadás, Typotex Elektronikus Kiadó Kft., Budapest, 2017, ISBN 963 279 693 5
  • Róka, S.: Egypercesek – Feladatok matematikából 14-18 éveseknek, Tóth Könyvkereskedés Kft., Debrecen, 1997
  • G. Nagy, L.: A világ legújabb logikai rejtvényei, Magyar Könyvklub, H. n., 2001, ISBN 963 547 512 8

Haladóknak ajánlom:

  • Smullyan, R.: A hölgy vagy a tigris? – és egyéb logikai feladatok, 2. javított kiadás, Typotex Kiadó Kft., Budapest, 2002, ISBN 963 7546 63 4
  • Smullyan, R.: Mi a címe ennek a könyvnek? – Drakula rejtélye és más logikai feladványok, Typotex Elektronikus Kiadó Kft., Budapest, 1996, ISBN 963 7546 64 2
  • Shasha, D.: Dr. Ecco talányos kalandjai, Typotex Kiadó – SHL Hungary Kft., 2000, ISBN 963 9132 72 1

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek alkalmához kötődik.

Barátságos számpárok

számok

Azokat a számpárokat, amelyekre igaz, hogy az egyik szám önmagánál kisebb osztóinak összege megegyezik a másik számmal és fordítva, külön-külön barátságos számoknak, együtt barátságos számpárnak hívjuk.

Másképpen: legyen d(n) az n természetes szám önmagánál kisebb osztóinak összege. Ha d(a)=b és d(b)=a, ahol ab, akkor a és b barátságos számpár.

Például: (220; 284), hiszen a 220 önmagánál kisebb osztói: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 és ezek összege 284, illetve 284 önmagánál kisebb osztói: 1, 2, 4, 71, 142 és ezek összege 220.

Írjunk Java programot, amely kiírja az 1-10000 zárt intervallumban található barátságos számpárokat!

1. megoldás

A baratsagosSzamparok1() eljárás ciklusai a brute force módszer szerint behelyesítik az összes lehetséges számot. Minimális lépésszám csökkentésre adódik lehetőség, hiszen a belső ciklus j változója i+1-ről indítható (így a megtalált számpárok nem íródnak ki fordítva is, mert teljesül, hogy i<j).

Az osztokOsszege1(n) függvény is minden lehetséges osztót figyelembe vesz 1-től n-1-ig.

2. megoldás

Kisebb módosításokkal a lépésszám csökkenthető. A baratsagosSzamparok2() eljárás külső ciklusánál figyelembe vettem, hogy a legkisebb barátságos számpár kisebb tagja nagyobb 200-nál. Mivel a barátságos számpárok tagjainak paritása mindig megegyezik (azaz mindkettő páros vagy mindkettő páratlan), így a belső ciklus j változója indítható i+2-ről és léptethető kettesével ( j+=2), és továbbra is teljesül, hogy i<j.

Az osztokOsszege2(n) függvényt is módosítottam. Mivel az 1 minden számnak osztója, illetve a 2 minden páros számnak osztója, így s lehet 3 vagy 1 és a ciklus indítható 3-ról. A páros számok esetén a számnál kisebb legnagyobb osztó maximum n/2 lehet, illetve ugyanez páratlan számok esetén n/3 lehet. Ezekre figyelve a max változó adja a ciklus léptetésének felső határát. Az i változó léptetésénél figyelembe vettem, hogy páratlan számnak csak páratlan osztói lehetnek ( i=3-mal szinkronban).

3. megoldás

Az eddigi két egymásba ágyazott ciklus helyett átszervezhető a baratsagosSzamparok3() eljárás. A j>i && osztokOsszege2(j)==i feltétel kiértékelése így sokkal hatékonyabb.

Mit gondolsz, milyen nagyságrendű különbségek adódnak, ha összehasonlítjuk a három megoldás futási idejét?

Az 1. megoldás futási ideje 1104156 ms, a 2. megoldásé 257055 ms, a 3. megoldásé 121 ms. A konkrét értékek helyett a nagyságrendet megfigyelve a különbség nagyon látványos.

A feladat megoldása során mindhárom megoldás helyes és megkapjuk az intervallumban található öt barátságos számpárt: (220; 284), (1184; 1210), (2620; 2924), (5020; 5564), (6232; 6368).

A bejegyzéshez tartozó teljes – időméréssel kiegészített – forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Források:

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomhoz kötődik.