Kódolás órája az Óbudai Egyetemen 2023

Az Hour of Code egy 2013-ban kezdődött globális mozgalom 180-nál több országban. Több tíz millió embert érint világszerte. Célja, hogy mindenki megismerkedjen a programozás alapjaival, egy órányi közös tanulás alkalmával. Az Óbudai Egyetem Neumann Informatika Karán 7. alkalommal került sor a Kódolás órája rendezvényre 2023. december 18-án.

A rendezvény weboldalán megtalálható néhány hívószó, szemléletformáló gondolat:

  • Miért tanuljak programozni? Azért, mert megtanít gondolkodni! A programozás egy tanulható, elsajátítható készség, amely fejleszti a logikai érzéket és a rendszerszemléletet.

  • Világszerte, így hazánkban is, olyan általános igény van informatikusokra, amelyet az álláskeresők tömege sem tud kiszolgálni.

  • A munkaerőpiacon is értékes tudás a programozás ismerete.

Korábbi saját rendezvényeink (Programozd a jövőd! – IT a jövőd, STEM nyári tábor, Digitális Témahét, Kutatók éjszakája, CodeWeek.eu) résztvevői közül toboroztunk egy csapatot, regisztráltunk és részt vettünk a Kódolás órája rendezvényen.

9 órakor kezdődött a plenáris megnyitó.

9:30-kor indult a feladatmegoldás a NIK számítógépes laborjaiban. Kezdő és haladó szintű feladatok, kihívások, számítógépes játékokban való vezérlés, stratégia tervezése, megvalósítása, tesztelése. Mindez igény szerint egyénileg vagy kiscsoportosan zajlott. A használt online felület élményalapú tanulást, gamifikációt biztosított. Többféle programozási nyelv közül lehetett választani, attól függően, hogy kinek milyen előismeretei voltak. A többség Python vagy JavaScript nyelveket választott.

11 órától – újra plenárisan – a NIK bemutatkozására került sor. Dr. Kertész Gábor – a NIK kutatási dékánhelyettese – ismertette a kar képzéseit, az alapképzések felépítését és a választható specializációkat. Természetesen a nyílt napokra jellemző erősségeink, hallgatók támogatása, ipari kapcsolatok, kari kutatások, munkavállalás hallgatóként kötelező elemek sem maradtak ki.

12 órától két ismeretterjesztő előadás következett. Az első előadás – a NJSZT részéről – a Neumann 120 rendezvénysorozat alkalmából Neumann János életét és munkásságát összegezte. Dömölki Bálint Neumann, a polihisztor című kutatásából megtudtuk, hogy Neumann összesen hat különböző szakterületen publikált. Ezek: „tiszta” matematika; analízis, alkalmazott matematika; logika, halmazelmélet; fizika, kvantummechanika; számítástudomány; gazdaságtan, játékelmélet. A második előadás – a NIK részéről – egy kategóriájában nyertes TDK (Tudományos Diákkör) munka ismertetése volt. Csippán György – a NIK hallgatója mesterséges intelligencia szakirányon – tartotta Szavakon túl: beszédvizualizáció MI segítségével, az elragadó vizuális média létrehozásáért címmel. Ismertette a beszélt mondatok rögzítéséhez, videó létrehozásához, valós idejű futtatás biztosításához kötődő metodológiáját, valamint felhasznált két generatív modellt, amelyeket össze is hasonlított kutatómunkájában.

Végül 13 órától a résztvevők megtekintették – szakszerűen felkészült tárlatvezetővel – a kar épületének 1. emeletén található IT Evolúció 2.0 című kiállítást. Az 52 db vitrinben található eszközök az alábbi témakörökhöz, szakterületekhez kötődnek: nyelv és beszédtechnológia, írás és írástechnológia, műszaki rajzolás eszközei, könyvnyomtatás, hang- és képrögzítés, elektromos távközlés, számítógépek, személyi számítógépek, az internet hazai megvalósítása, mobil és okos technikák. A kiállítás Dr. Kutor László, az Óbudai Egyetem címzetes egyetemi tanárának több mint 40 évnyi gyűjtő és rendszerező munkájával kifejlődött magángyűjteményéből jött létre.

Kölcsönös ajándékozás véletlenszerűen

A kölcsönös ajándékozás időről-időre több közösségben is felmerül. Munkahelyi környezetben és iskolai csoportokban is (például: Télapó, karácsony). Hagyományos megközelítésben így hangzik a szabály: „húzzunk neveket a kalapból”. Másképpen: mindenki 1 ajándékot ad, mindenki 1 ajándékot kap és a sorsolás véletlenszerűen történik.

Készítsünk Java programot, ami megoldja a kölcsönös ajándékozást véletlenszerűen!

A neveket tároljuk el szövegfájlban ( nevsor10.txt). Soronként egy nevet. Ha különböznek, akkor elegendő a keresztnév. A soroknak/neveknek különbözniük kell. Ha szükséges, akkor hozzáírjuk a vezetéknevet, a vezetéknév első betűjét vagy sorszámot. Ezt a program beolvassa és megjegyzi egy szöveg típusú generikus nevsorLista nevű indexelhető adatszerkezetben. A nevek eredeti sorrendje nem befolyásolja a kiválasztást, mert a neveket a program összekeveri (helyben, véletlenszerűen, a shuffle() metódussal). Adott elemszámú lista indexelhető nullától elemszám-1-ig ( size()-1-ig).

A szövegfájl olvasása, tartalmának betöltése során – az ékezetes karakterek miatt – előfordulhatnak karakterkódolási problémák. Ekkor használható a readAllLines() függvény túlterhelt változata esetén a Charset típusú második paraméter, például így: Charset.forName("ISO-8859-2"). A fájlkezeléshez kötelezően kivételkezelés is szükséges (ezt most nem részletezem).

1. megoldás

Az ajándékot adó-kapó párosokat a listában egymás mellett lévő i-edik (bal) és i+1-edik (jobb) nevek adják. Az adó az elsőtől az utolsó előttiig, a kapó a másodiktól az utolsóig léptethető. Kimarad az a pár, amikor az utolsó ad és az első kap. A lista indexei szerint az adók esetében a nulladik elemétől az utolsó előtti eleméig és a kapók esetében a lista első elemétől az utolsó eleméig jelenti a kiválasztást. Mindez könnyen megoldható for számláló ciklussal. A kimaradó pár ajándékot adó tagja a lista size()-1-edik eleme és kapó tagja a lista nulladik eleme. Ez a ciklus után egyszerű kiírással megoldható.

2. megoldás

A program átmenetileg megváltoztatja a listát: az utolsó elem után bővül az első elemmel ( nevsorLista.add(nevsorLista.get(0))). Ennek köszönhetően az ajándékot adó-kapó párosokat a listában egymás mellett lévő lévő i-edik (bal) és i+1-edik nevek adják. Most nem lesz kimaradó pár, mert a korábbi utolsó elem most az utolsó előtti elem és az utolsó elem most az első. Másképpen: mindenki ad és mindenki kap.

A megoldás Stream API-t használ. Először előállít egy olyan IntStream típusú folyamot, amiben az ajándékot adó és kapó párosok adó (bal) tagjainak sorszámát/indexét tartalmazza. Ezután ezt végigjárva összefűzi a szövegeket ( mapToObj()) úgy, hogy a páros kapó (jobb) tagja az adó tag rákövetkezője. Végül a program kiírja a összefűzött szövegeket ( forEach()) a konzolra. Ha a neveket tartalmazó listát használnánk később még valamire (azaz kellene az eredeti összekevert állapota), akkor érdemes aktiválni a megjegyzésbe tett utolsó utasítást.

Eredmény

A program konzolos/szöveges eredménye mindkét esetben azonos. Persze a nevek sorrendje különbözhet, hiszen az összekeverés minden futtatás esetén másképpen alakul(hat), mert véletlenszerű. Például:

Érdemes tesztelni és átgondolni, hogy mi történne, ha üres a fájl, üres a generikus lista, 1 név van, 2 név van, illetve nem szabadna ilyet, de mi történne azonos nevek esetén. Vajon különbözik/különbözne a fenti két megoldás eredménye? Miért?

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra Objektumorientált programozás és 37-44. óra: Fájlkezelés alkalmaihoz kötődik.

Kép élesítése effektus működése

Ismert számos képfeldolgozó, képjavító effektus. Az egyszerűbb effektusok elérhetők ingyenes web- és mobil alkalmazásokban, PowerPointban. Az összetettebb (művészi) effektusokhoz, szűrőkhöz már érdemes professzionális eszközt használni, ilyen például az Adobe Photoshop. Ezek a belépő szint képeffektusai kulcsszavakban: élesítés (sharpen), homályosítás (blur), elmosódás (gaussian blur), folyadékszerű rajz (liquid), olajfestmény (oil painting), öregítés (sepia), szürkeskála (grayscale).

Lássuk, hogyan valósítható meg Java programozási nyelven a kép élesítése!

A kép adatszerkezete

Adott egy képfájl. Formátuma a tipikus, feldolgozhatók (JPG, GIF, PNG, WebP) egyike. Ezek rasztergrafikus képformátumok. Lekérdezhető a dimenziója: ez képpontban (pixelben) jelenti a kép szélességét (width) és a kép magasságát (height). A vászontechnika meghatározza a kép origóját (0, 0) és a képpontok kétdimenziós koordinátapárját. A kép origója a bal felső sarokban van. A kép oszlopai (column) jobbra haladva növekvő módon, a kép sorai (row) lefelé haladva növekvő módon számozottak. Egy pixel koordinátapárja (c, r) alakban írható le. Minden pixel három szín kombinációjaként áll elő (r, g, b). Másképpen: a piros, zöld és kék összetevők aránya alapján meghatározott. A tipikus színmélység alapján a színek külön-külön 256-félék lehetnek, és ezeket 0-tól 255-ig egész szám képviseli. A 0 az adott szín hiányát, a 255 a szín teljes intenzitását jelenti.

A kép élesítéséhez használható szűrőmátrixok

A kép élesítése során szűrőt alkalmazunk a kép belső pixeleire. A kép 4 szélén lévő pixeleket nem változtatjuk. Többféle szűrő közül választhatunk, íme két példa:

A három színösszetevőre külön-külön kell alkalmazni a szűrőt. Az aktuális pixel – amire alkalmazzuk a szűrőt – a 3×3-as mátrix középső eleméhez igazítva szorzóértékeket tartalmaz. A konkrét eset: az a mátrix esetén az 5 érték a 2. sor 2. oszlopában helyezkedik el; ennek a közvetlen szomszédos pixeleire a -1 értékek, átlós szomszédaira pedig a 0 értékek vonatkoznak. Eredményül a szűrt pixel színeit kapjuk meg külön-külön. Ha a kapott értékek kisebbek 0-nál, akkor nullázzuk őket. Ha a kapott értékek nagyobbak 255-nél, akkor beállítjuk azokat 255-re. Az a szűrőmátrix kevésbé élesít, a b szűrőmátrix erősebben élesít.

Természetesen sok más képélességhez köthető szűrő is van még. Olyanok is vannak, ahol nem csak a közvetlen szomszédos pixeleket veszi figyelembe az algoritmus. További kulcsszavak a témához kötődően: digitális képfeldolgozás, lokális operátor, korreláció, konvolúció, átlagszűrő, mediánszűrő, zajszűrő, Laplace-szűrő.

A kép élesítését megvalósító Java forráskód-részlet

A fenti a mátrixot a SHARP_FILTER konstans kétdimenziós tömb tárolja. A paraméterként átvett BufferedImage típusú img1 objektum kép pixeleinek végigjárását ütközőként segíti a w szélesség és h magasság. A data egydimenziós tömb sorfolytonosan tárolja a kép pixeleit. Az if elágazó utasítás igaz ága kezeli a kép 4 szélét (változatlanul hagyott másolt színek). Az if hamis ága a belső pixelekre alkalmazza a szűrőmátrixot. A red, green, blue változók tartalmazzák az aktuális pixel színeit, amelyekbe az eredeti pixelre alkalmazott szűrő által szorzott értékek kerülnek, „belekényszerítve” a 0-255 zárt intervallumba. Végül az eredményül visszaadott img2 kép pixelei kerülnek beállításra. Az alábbi sharpenEffect() függvény mindezt megoldja az alábbiak szerint:

A metódus meghívása a fájlkezelést is tartalmazó vezérlőmetódusban például így történhet:

Az eredeti és élesített képek összehasonlítása

A bal oldalon az eredeti kép, a jobb oldalon az a mátrixszal élesített kép látható:

A bal oldalon az eredeti kép, a jobb oldalon a b mátrixszal élesített kép látható:

A látvány alapján fontos kiemelni, hogy másképpen is lehet összehasonlítást végezni. Például: színtérkép, színmélység, színösszetevők aránya (hisztogram).

Ötletek továbbfejlesztésre

  • Konzolos program átvehetné parancssori paraméterként a szűrőmátrixot, vagy annak nevét, kódját, egyes értékeit.
  • Grafikus felületű programban vízszinten JScrollBar  GUI komponens(ek) segítségével paraméterezhető, kigörgethető lehetne a szűrőmátrix szélsőértéke(i).
  • A fenti effektek a kép összes pixelét érintik. GUI felületen megoldható az is, hogy ki tudjuk jelölni a kép egy-egy részét, amire alkalmazni szeretnénk az effektek. Ez a kijelölés többféle lehet, például téglalap alakú, szabálytalan, átlátszó, adott vagy adotthoz hasonló árnyalatú színű, vagy valaminek a körvonala.
  • Egy mappában lévő összes képre alkalmazható effekt, előnézettel, képfájlonként megerősítéssel, jóváhagyással, csoportos kijelöléssel, szűrővel.
  • Szürkeskála effekt megvalósítása és tesztelése az alábbi forráskód-részlettel:
  • Homályosítás effekt megvalósítás és tesztelése a 4 élszomszéd színeinek átlagolásával, így:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb GUI programot tervezni, kódolni, tesztelni, kiegészítve a 37-44. óra Fájlkezelés alkalmaihoz kötődő példaprogramokkal.

Táblázatos hőtérkép készítése

Ebben a projektben táblázatos hőtérképet készítünk Java és JS nyelveken. Java programot készítünk az adatok véletlenszerű előállításához és a sablon alapján történő HTML fájl generálásához. JavaScript program fogja a grafikont megjeleníteni a weboldalon. Tervezünk, kódolunk, tesztelünk. Lássunk hozzá!

Mi az a hőtérkép?

A hőtérkép (heatmap) olyan grafikon, amely könnyen áttekinthetővé tesz nagy mennyiségű adatot úgy, hogy kategorizál/csoportosít és az előfordulások tartományai alapján különböző színeket rendel azokhoz. A szín hozzárendelése egy intervallumból történik. Például a világosabb a ritkább, a sötétedő szín az egyre gyakoribb értékeket jelenti. A tipikus hőtérkép kétdimenziós és az előforduló adatok mennyiségét, azok arányait, eloszlását, szóródását (nem szórását), gyakoriságát jeleníti meg. A hőtérkép gyors vizuális összefoglalást, áttekintést biztosít. A projekt során sorokból és oszlopokból álló táblázatos hőtérképet készítünk.

A táblázatos hőtérkép nem összekeverendő a következő két megközelítéssel:

  • Ha az adatok lokációhoz kötődnek és térképen jelennek meg, akkor azt tematikus térképnek nevezzük. Erről már blogoltam korábban, lásd: Céline Dion – Courage World Tour, amikor az énekesnő USA-beli államokban előforduló koncertjeinek számát jelenítettem meg. Ehhez hasonlók az amerikai elnökválasztás során használt tematikus térképek, amelyek a(z egyes) jelöltek szavazatainak arányát ábrázolják meg szintén államonként.
  • Ha az adatok webergonómiához, bannervaksághoz, inkább fókuszban lévő tartalmakhoz, felhasználói élmény (UX) tervezéshez kötődnek, akkor a weboldal grafikus elemeihez (azok pozíciója) alapján rendelünk hozzá színeket attól függően, hogy mennyi ideig nézi azt a felhasználó.

Mi a feladat (koncepcionálisan)?

Adott egy konditerem, amely hétköznapokon egy megadott időintervallumban használható. Ehhez kulcsot kell felvenni és leadni. Az első belépő nyitja és az utolsó távozó zárja az ajtót. A teremhasználat offline nyilvántartott, így nehézkes bármiféle kimutatás, statisztika. A „menet közbeni” jövés-menést nem tudjuk követni. Természetesen adott számos szabály (felelősség, biztonság, balesetvédelem, létszámkorlát), amit most nem részletezek.

Elhelyezünk az ajtó mellett, belülről egy belépéshez és egy távozáshoz tartozó QR kódot. Készítünk egy egyszerű mobil alkalmazást és megkérjük a konditermek használóit, hogy belépéskor és távozáskor „csekkoljanak”. Anonim gyűjtjük a belépések és távozások időpontját (valahol egy szerveren, bármilyen fájlban, adatbázisban).

A konditermek használatára vonatkozó összesített adatokat könnyen átlátható módon szeretnénk weboldalon megjeleníteni: heti bontásban, a nyitva tartás időszakát órás blokkokra bontva az igénybevételtől függően jelenjenek meg az adatok táblázatos hőtérképen.

Ez az állapot átmeneti. Segítheti a konditermekbe tervezett – egyéni használattól független – események ütemezését. Ezeket akkor lenne célszerű időzíteni, amikor nem, alig, vagy kevésbé használt, foglalt az adott konditerem. A továbbfejlesztés következő állapotában könnyen lecserélhető a QR kód RFID alapú proximity kártyára, proxy kulcstartóra: először csak a jelenlét nyilvántartásához, később akár az ajtó nyitásához is.

Mit valósítunk meg mindebből Java nyelven?

Egyetlen konditeremre fókuszálunk. A hétköznaponként nyitva tartás legyen 16 órától 21 óráig. Aki edzésre jön, véletlenszerűen 20 és 40 perc közötti időszakot tölt a konditeremben. 16 órától lehet belépni. Az utolsó belépés 20:40-kor lehet (érdemes). 21 órakor mindenki elhagyja a konditermet. Nem fordul elő, hogy valaki nem jelzi a belépését vagy a távozását. Mivel anonim a nyilvántartás, így elegendő a dátum/időhöz, időbélyeghez egyetlen állapotot tárolni: be vagy ki. Valaki belépett nyitáskor vagy valamikor utána, majd távozott 20-40 perccel később, de legfeljebb záráskor.

A szükséges adatokat véletlenszerűen állítjuk elő. Egy hétre vonatkozó adatokat generálunk. Ezek a fenti paramétereknek megfelelő, összetartozó belépéshez és távozáshoz köthető időpontok. Kiegészítve a napok ciklusban való léptetésével hétfőtől péntekig. Az adatokat feldolgozva, összegyűjtve, csoportosítva, kategorizálva olyan (kimeneti) formátumra alakítjuk, amely kompatibilis a táblázatos hőtérkép adatmodelljével (bemenetével). Mindez Java nyelven valósul meg.

Mi történik JavaScript nyelven?

A webes megjelenítéshez szükséges egy HTML fájl, amelyben beágyazva található meg egy téglalap alakú területként megjelenő táblázatos hőtérkép. Ez sokféleképpen testre szabható: adható hozzá felirat, beállítható a sorokhoz és oszlopokhoz tartozó szöveg és a táblázat celláiban megjelenő értékek, adott a lebegő, az egér kurzor helyzetétől függő – cellánként különböző – jelmagyarázat, és persze mindennek van formátuma (betűtípus, méret, szín, igazítás, kitöltés). A fix, adatoktól nem függő beállításokat tartalmazó weboldalt sablonként elkészítjük. Mindez JavaScript nyelven történik. Ezután Java program a weboldal sablonját kiegészíti (cseréli, behelyettesíti, feltölti) a szükséges adatokkal.

Hogyan alakul az időintervallumok átfedése?

A konditerem használatának alakulását követjük, amihez táblázatos hőtérképet készítünk. Ehhez a nyitva tartás időintervallumát órás blokkokra bontjuk. Blokkonként összesítjük a jelenlétet, azaz megszámoljuk, hogy éppen akkor hányan veszik igénybe a konditermet, hányan vannak jelen/benn.

A konkrét paraméterektől függően az alábbi képen látható 3 eset egyike fordulhat elő. A és B jelöli az órás blokk elejét és végén, tehát ez 60 perces intervallum. Tarthat például: 16:00:00-16:59:59-ig. X és Y jelöli a jelenlét intervallumát, azaz a belépés és távozás időpontjait. Ez 20 és 40 perc között alakul. Haladjunk balról jobbra az ábrán.

Az első esetben ugyanarra az órára esik a belépés és a távozás. Ez az eset egyértelmű. A másik két esetben átfedés van több órás blokk között, mert különböző órára esik a belépés és a távozás. El kell dönteni, hogy ekkor hogyan összesítjük a jelenlétet. Válasszunk az alábbi két módszer közül:

  • Az első módszer szerint mindkét órához – ahol átfedés van – összesítjük a jelenlétet 1-1 főként, hiszen ha nem is végig, de jelen volt mindkét órás blokkban. Például: egy 16:50:00-17:20:00 jelenlétet a 16 és 17 órás blokkban is figyelembe veszünk.
  • A második módszer szerint időarányosan tesszük mindezt, azaz súlyozunk aszerint, hogy milyen hosszú jelenlét esik az egymást követő órákban. Például: egy 16:50:00-17:20:00 jelenlétet a 16 órás blokk esetében egyharmad, a 17 órás blokk esetében kétharmad a jelenlét adott órára eső aránya, súlya.

Az első módszert valósítjuk meg. Ez a döntés jelentősen befolyásolja, hogyan kell értelmezni később az elkészült táblázatos hőtérképet.

Objektumorientált tervezés

A koncepcionális terv alapján modellezünk. A szükséges adatok tárolására és alapfunkcióira fókuszálunk. Az osztály tárolja az összetartozó adatokat és megvalósít rajtuk értelmezhető műveleteket. Az időintervallum/időtartam kezelését a Duration ősosztály oldja meg. Tárolja a start és stop – naptól független időpontokat tároló – adatok és a rájuk vonatkozó FORMAT – megjelenítéshez kötődő – konstanst. Biztosítja a szükséges műveleteket: konstruktor, getterek, megvalósítja az időintervallumok átfedését az isOverlapped() függvénnyel, valamint ad szöveges reprezentációt a toString() függvénnyel. Az ősosztályból öröklődik az utódosztály. A DurationMap osztály a naptól független időpontokat kibővíti a hozzájuk tartozó day nappal, valamint képes tárolni az összesített, megszámolt jelenlétet a count változóban. Részt vesz a megszámolás folyamatában azzal, hogy lépésenként meghívható az  incrementCount() eljárása.

A java.time csomagbeli LocalTime osztály képes a dátumtól független, napon belüli időpont tárolására és biztosít néhány alapvető funkciót a kezelésükre. Az adattárolás a napon belül eltelt időn alapul és nekünk (bőven) elegendő a másodperc alapú megjelenítés. A DateTimeFormatter alkalmas ezen időpontok formátumának tárolására, például óó:pp:mm alakban.

A Duration osztályból annyi objektum készül, ahány jelenlét adódik véletlenszerűen. Akár több száz is lehet. A DurationMap  osztályból generált objektumok száma jóval kevesebb. Heti 5 napra, napi 5 órás blokkra 25 db készül belőle.

A vezérléshez kötődő osztály tervezését nem részletezem.

Íme a Java forráskód

A Java forráskód minden megtervezett funkciót megvalósít, támogatva a koncepciót. Most nem részletezem a működését.

A véletlenszerűen előállított adatok

A lista görgethető:

A weboldal sablonja

HTML és JavaScript nyelvű forráskód vegyesen. A Java program a fájl 31. sorában lévő ##HEATMAP_DATA## szöveget cseréli le a táblázatos hőtérkép megjelenítéséhez szükséges véletlenszerűen előállított adatokra.

További részletekért, beállításra vonatkozó, testre szabási lehetőségekért érdemes tanulmányozni az AnyChart dokumentáció Heat Map Chart fejezetét.

Az eredmény

Az előállított weboldalt böngészőben megjelenítve ezt kaphatjuk eredményként (vagy a véletlenszerűen generált adatoktól függően hasonlót):

A táblázatos hőtérkép hasznos eszköz. Elemezve könnyen döntéseket hozhatunk a koncepcionális tervezés során vázoltak alapján.

Továbbfejlesztési lehetőségek

  • Lehetne több konditerem is. Ekkor rögtön felmerül az összehasonlítás lehetősége, egyben igénye is.
  • Lehetne hétköznaponként eltérő a konditerem nyitva tartása.
  • Az időpontok kezelési precíz. Egy másodpercen múlik, hogy nem fedik át egymást. Az időpontok megjelenítése lehetne óó:pp alapú is.
  • Az időintervallumok jelenleg állandóak, mindig 1 órásak. Könnyen megoldható lenne, hogy dinamikusak legyenek: például a népszerűbb időszakok felbonthatók lennének két 30 perces blokkra. A népszerűség értelmezhető minden nap (héten) másképp. Egyszerű képlettel: átlag felett, medián felett.
  • Általánosíthatnánk a létesítménygazdálkodáshoz kötődő erőforrást nem (feltétlenül) helyhez kötött, mozgatható, kölcsönözhető eszközökre is: hangszer, projektor, stúdió felszerelés.
  • Másképpen valósulna meg az adatgyűjtés, ha egyetlen QR kód állna rendelkezésre és back-end helyett a „mobil alkalmazás emlékezne” a belépésre és távozásra. Ez jelentheti legalább az aznapi adatokat, de tárolható historikusan is.
  • Hibát is kellene, lehetne kezelni. Például a kiléptetés lehetne automatikus a nyitva tartás végén. A jelenlét igazából igaz-hamis állapot: ha eddig hamis volt és történt valami, akkor igaz lesz és fordítva. Ha van mögötte állapotmegőrző emlékezet (mivel programozunk, így nyilvánvalóan azonnal objektumra gondolunk, vagy annak valamilyen fájlba vagy adatbázisba történő leképezésére).
  • A nyilvántartás könnyen megvalósítható személy hozzárendelésével, azaz lehetne nem anonim is a jelenlét.
  • Egymást átfedő időpontok esetén (ha nincsenek a hosszukra vonatkozó korlátozó feltételek) általánosítva 6 eset fordulhat elő. Például ha a jelenlét lehetne 60 percnél hosszabb, de 120 percnél rövidebb is, akkor nem lenne elegendő a fenti 3 esetet kezelni a jelenlét összesítése során.
  • Valósítsuk meg az időintervallumok átfedésénél bemutatott második – időarányos – módszert!
  • A napi jelenlét 20 fővel valósul meg a programban. Lehetne ez a paraméter is véletlenszerű, például 15-30 fő között, vagy esetleg népszerűbb a péntek.
  • Jelenleg a táblázatos hőtérkép statikus. Csak a (befejezett egész heti) múltbeli adatokat tudja megjeleníteni. Az aktuális, jelenlegi állapothoz szinkronizáció, ütemezés kell. Óránként (a blokkok végén automatizáltan), de akár 5 percenként is aktualizálható a hőtérkép.
  • A táblázatos hőtérkép megjelenítése önálló weboldal helyett beágyazható widget felületén is történhet.
  • Többféleképpen is készítettünk már grafikonokat, íme néhány a szakmai blogunkból: Kockadobás kliens-szerver alkalmazás, Sankey-diagram készítése, JFreeChart grafikon készítése.

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A projektfeladat – attól függően, milyen szinten valósítjuk meg – kapcsolódhat több tanfolyamunk tematikájához. A fenti forráskód a Java SE szoftverfejlesztő tanfolyam 17-28. óra: Objektumorientált programozás és a 37-44. óra Fájlkezelés alkalmaihoz kötődik. Ha többrétegű, elosztott alkalmazásként valósítjuk meg, akkor a Java EE szoftverfejlesztő tanfolyam a 9-16. óra: XML és JSON feldolgozás, dinamikusan generált weboldalba beépítve a 33-40. óra: Java Server Pages alkalmaihoz kapcsolódik. Ha fájlok helyett egyszerű adatbázist használnánk, akkor a Java SE szoftverfejlesztő tanfolyam 45-52. óra: Adatbázis-kezelés JDBC alapon, ha objektumrelációs leképezéssel oldanánk meg, akkor a Java EE szoftverfejlesztő tanfolyam 25-32. óra: Adatbázis-kezelés JPA alapon alkalmakhoz kötődhet.

Programozási Hét 2023 – CodeWeek.eu

Programozási hét CodeWeek.eu

Programozási hét CodeWeek.euAz Európai Programozási Hét idén 2023. október 7-22-ig kerül megrendezésre. Ez egy önkéntesek által működtetett, alulról szerveződő kezdeményezés. Az önkéntesek saját országukban a Programozási Hét nagyköveteként népszerűsítik a programozást. Ehhez nyílt és ingyenes (online és offline) eseményeket hirdetnek meg a CodeWeek.eu weboldalon.

A Programozási Hét célja

  • a programozással való alkotás megünneplése,
  • az emberek felvértezése képességekkel,
  • az emberek összekapcsolása,
  • még több ember érdeklődésének felkeltése a tudomány, a technológia, a mérnöki ismeretek és a matematika iránt.

Miért jó ez az érdeklődőknek/résztvevőknek?

  • A programozás szórakoztató!
  • Programozni kreatív tevékenység! Az emberiség a kezdetektől fogva alkot: agyagból, kőből, téglából, papírból vagy fából. Manapság programozással is alkotunk.
  • A programozás felvértez! Sokkal többre is képesek vagyunk annál, hogy csak fogyasszuk a digitális tartalmat; programozással sokféle dolgot alkothatunk, és azokat milliók számára elérhetővé tehetjük. Létrehozhatunk weboldalakat, játékokat, irányíthatunk egy számítógépet vagy egy robotot.
  • Értsük meg a világot! Manapság egyre több minden össze van kapcsolva. Ha némi rálátásunk van arra, hogy mi történik a színfalak mögött, akkor a világot is jobban megérthetjük.
  • A programozás megtanítja nekünk a számítógépes gondolkodást, fejleszti a problémamegoldást, kreativitást, kritikus érvelést, analitikus gondolkodást, valamint csapatmunkára késztet.
  • Manapság a munkahelyek 90%-a digitális készségeket, köztük programozási ismereteket követel a munkavállalóktól.

2015-től veszünk részt az esemény szervezésében, programozást népszerűsítő előadások, laborgyakorlatok meghirdetésével és megtartásával. 2022-ben világszerte 80+ országban 4+ millió érdeklődő résztvevő csatlakozott. Ajánljuk korábbi beszámolóinkat is szakmai blogunkból, lásd: CodeWeek.eu címke.

Meghirdetett eseményeink

2023-ban hat it-tanfolyam.hu-s eseményt hirdettünk meg a Programozási Hét 2023 rendezvényen.
Helyszín: 1056 Budapest, Váci utca 47., 3. emelet, megközelítés
Dátum és időpont: 2023. október 21. 9:00-12:00-ig
Az események ingyenesek voltak, de a részvétel előzetes regisztrációhoz kötött.

Rendezvényünk plakátja

A rendezvény jó hangulatban telt, 40+ érdeklődőt vonzott. Többen rendszeresen visszatérő vendégek voltak, például a tavaszi Digitális Témahét, vagy a szeptember végi Kutatók éjszakája rendezvényeinkről. Eltérő belső motivációval érkeztek, ezek kulcsszavakban: kíváncsiság, pályaorientáció, karrierváltás, programozási trükkök. Igazán tartalmasan telt el idén is ez a rendezvényre szánt három óra. Köszönöm oktató kollégáimnak és 2 korábbi hallgatónknak, hogy előadóként részt vettek a Programozási hét 2023 – CodeWeek.eu rendezvényünkön. Prezentációinkat tanfolyamaink hallgatói számára – a témához kapcsolódó témakörökhöz, ILIAS-ra feltöltve – tesszük elérhetővé.

9:00-9:25 – Szegedi Kristóf: Játékprogramok heurisztikáinak elemzése
A tudásalapú rendszerek elméleti alapjaihoz tartoznak a mesterséges intelligencia különböző megoldáskereső módszerei, az állapottér-reprezentáció és a klasszikus keresési stratégiák, heurisztikák. Egy játék állapotait nyilvántartjuk egy adatszerkezetben. Lehet, hogy néhány lépést előre kalkulálunk (kiterjesztünk) és ezek elágazásaiból fát (fa adatszerkezet) tudunk építeni. Ezeket hatékonyan karban kell tartani konstrukciós és szelekciós műveletekkel. Heurisztika alapján döntéseket kell hozni. Vajon melyik állapot a jobb, vagy kevésbé rossz, legalább olyan jó mint ahol járunk? Ki kell értékelni és abba az irányba érdemes haladni, amelyben végül a döntések sokasága igazolja és egyben adja a nyerő stratégiát. Ha ez nem megy, akkor még mindig játszhatunk nem vesztő stratégiával, azaz lehet cél a hosszabb játékmenet, vagy akár a döntetlen állapot is. Az előadás ismertet néhány tipikus problémaszituációt, játékteret leképező reprezentációs gráfbeli navigációt és összehasonlít néhány fabejáró/gráfbejáró stratégiát. A program mindhárom Java tanfolyamunk orientáló moduljához kötődik. Előismeretként feltételezünk némi jártasságot a programozási alapismeretek, programozási tételek, ciklusok, metódusok, tömbök témakörökből.

9:30-9:55 – Kaczur Sándor: Írjunk hatékony adatbázis-lekérdezéseket!
Az Oracle HR sémában, először tipikus, hétköznapi szavakkal megfogalmazunk néhány lekérdezést, majd SQL nyelven megvalósítjuk és elemezzük, hogy helyesek-e, hatékonyak-e, mit adnak vissza. Szükség esetén optimalizáljuk, testre szabjuk ezeket. Kategóriák: egyszerű, összetett, aggregáló, soktáblás, hierarchikus/rekurzív lekérdezések. Ha lehet, grafikusan is megjelenítjük a lekérdezések eredményeit Java swing felületen, beépített JTable és JTree komponensekkel, illetve JFreeChart grafikonnal is. A Java adatbázis-kezelő tanfolyamunk tematikájához kötődik a program. Előismeretként feltételezünk némi jártasságot adatbázis-kezelés, SQL, Java swing felhasználói felület témakörökből.

10:00-12:20 – Hollós Gábor: Érvényes lottószelvényt kaptunk?
Garantáltan helyes lottószelvény helyett előállítunk valamit, amiről feltételezhetjük, hogy lehet lottószelvény. Egymásra épülő unit teszteket készítünk, hogy valóban lehet-e. Például: kapott a teszt metódus egyáltalán valamit paraméterként? Tömböt kapott paraméterként? Hány elemű tömböt? Mekkora a tömbben lévő legkisebb és legnagyobb elem? Különböző a tömbben minden elem? (Ha nagyon szigorúak vagyunk: növekvő sorrendben vannak a tömbben az elemek?) Ha minden kritérium teljesül, akkor érvényes lottószelvényünk van. Kiegészíthetjük időméréssel is. Megtudjuk, hogyan kapjuk meg azt, hogy az esetek 89%-a helyes ötöslottó szelvény lesz. A program a Java SE szoftverfejlesztő tanfolyamunk tematikájához kapcsolódik. Előismeretként feltételezünk némi jártasságot programozási alapismeretek, programozási tételek, ciklusok, metódusok, tömbök, listák, halmazok, lambda kifejezések témakörökből.

10:25-10:55 – Kaczur Sándor: Java kollekciók hatékonysága
Adott egy ismert algoritmus egy ismert problémára. A gyakorlati bemutató példákat mutat arra, hogy az ismert Java kollekció keretrendszer különböző adatszerkezeteinek funkcionalitását/szolgáltatásait felhasználva mennyire eltérő megoldásokat tudunk készíteni. Mindegyik megoldás ugyanazt az eredményt adja, de alapjaiban más gondolatmenettel születtek. Vajon melyik tekinthető hatékonyabbnak? Mennyi tárhelyet igényelnek? Mennyi idő alatt hajtódnak végre? Mennyire bonyolultak, azaz mennyire könnyű/nehéz megérteni/dokumentálni/elmagyarázni? Előkerülnek különböző Set, Queue, List, Map implementációk, programozási tételek. Amit csak lehet, mérünk, összehasonlítunk, elemzünk. Végül az eredmények alapján javaslatokat adunk: mikor, miért, mit (mit ne), hogyan (hogyan ne) használjunk. A program a Java SE szoftverfejlesztő tanfolyamunk tematikájához kötődik. Előismeretként feltételezünk némi jártasságot a programozási alapismeretek, programozási tételek, ciklusok, metódusok, tömbök, listák, halmazok, lambda kifejezések témakörökből.

11:00-11:25 – Kiss Balázs: Gondolkodjunk logikusan!
Az előadás során áttekintjük az intelligencia, a kreatív problémamegoldó és logikus gondolkodás összefüggéseit és izgalmas feladatokból válogatva közösen megoldunk néhány fejtörő feladatot. Néhány példa: Hány éves a kapitány?CHOO + CHOO = TRAIN, Logikus gondolkodás teszt. Minden feladathoz adunk rávezető példákat – ha esetleg egyik-másik nem menne, akkor ebből megtudod, miket érdemes gyakorolni, hogy menjen. A program mindhárom Java tanfolyamunk orientáló moduljához kötődik. Előismeretként feltételezünk némi jártasságot az algoritmusok, programozási alapismeretek, programozási tételek témakörökből.

11:30-12:00 – Falus Anita, Horváth Zoltán Miklós: Friss munkaerőpiaci tapasztalataink szoftverfejlesztőként
Mennyire könnyű ma szoftverfejlesztőként elhelyezkedni szakirányú felsőfokú végzettség nélkül? Milyen kihívásokkal találkozhatunk a felvételi folyamat során? Milyen elvárásokat támasztanak a munkaadók egy junior szakemberrel szemben? Hogyan telnek a beilleszkedés után a hétköznapok junior fejlesztőként kis létszámmal működő informatikai profilú kisvállalkozásnál? A tanfolyamainkon 2021-ben és 2022-ben végzett előadók karrierváltó junior szakemberként személyes tapasztalataikról számolnak be és válaszolnak a kérdésekre. A program a Java tanfolyamaink orientáló moduljához kötődik.