Java fejtörők – bevezetés

Java fejtörők

Java fejtörőkJava fejtörők – csapdák, buktató, és szélsőséges esetek. Ez egy könyv címe, amelynek szerzői J. Bloch és N. Gafter. Magyar nyelven a Kiskapu Kft. jelentette meg. A 2010-es magyar kiadás a 2005-ös angol nyelvű kiadás fordítása. A könyv weboldaláról (http://www.javapuzzlers.com), letölthető a 95 fejtörőhöz tartozó mintapéldák gyűjteménye, és elérhető a 270 oldalból minta fejezetként 28 oldalnyi tartalom 9 fejtörővel és azok részletes magyarázataival.

Messze nem mai az anyag, de teljesen örökzöld. Ma is kifejezetten igazán izgalmas átgondolni ezeket a fejtörőket. Biztos vagyok benne, hogy az igazán profiknak is nyújt újdonságot egy-egy fejtörő mögötti részletes magyarázat. Sokszor kiderül az a ravasz és csavaros magyarázatok között, hogy mire gondolt a költő, azaz mi volt/lehetett a Java programozási nyelv tervezése során a szakemberek elképzelése, illetve előfordultak-e kompromisszumok, amiknek persze következményei vannak.

A két részre bontott blog bejegyzés a könyv anyagából válogatva készült el. Ez az első rész, bevezető, alapozó szintű példákkal. A második rész haladó szintű példákat tartalmaz.

1. fejtörő: Mit ír ki program a konzolra?

Két – literálként megadott – egész szám összegét kell kapni. Két egyforma értéket várunk: 66666. Mégsem ezt kapjuk. Az első kiírás 66666-ot, a második 17777-et jelenít meg a konzolon. A kulcsszó a különböző egész literálok megadása. Részletes indoklás a blog bejegyzés végén található.

2. fejtörő: Mit ír ki program a konzolra?

Szöveges literálokat hasonlítunk össze, amelyek egyforma ( length: 10) tartalommal jönnek létre. Döntések eredményeit várjuk, boolean típusú változókat. Négy sorba tördelve ezt kapjuk: false, false, Animals are equal: false, Animals are equal: true. A kulcsszó a művelet végrehajtás sorrendje, másképpen kifejezések kiértékelési sorrendje. Részletes indoklás a blog bejegyzés végén található.

3. fejtörő: Mit ír ki a program a konzolra?

Természetesen a megjegyzéssel nem törődünk és arra gondolunk, hogy a konzolon a Hello World! jelenik meg (a két kiíró utasítás eredménye egyetlen sorban egymás után) és nem is értjük, hogy mi a kérdés. Nyilván a helyzet nem ilyen triviális. A program nem futtatható. A kulcsszó az unikód escape szekvencia (védőkarakter). Részletes indoklás a blog bejegyzés végén található.

4. fejtörő: Mit ír ki a program a konzolra?

Nyilván szintaktikai hibát feltételezünk, de a program hibátlan és futtatva ezt látjuk a konzolon: browser::maximize. A kulcsszó a címke/utasításcímke. Részletes indoklás a blog bejegyzés végén található.

5. fejtörő: Mit ír ki a program a konzolra?

Gyanús a helyzet. Adott egy függvény, aminek kötelezően van visszatérési értéke. Ez rendben van. Tudjuk, hogy a return utasítás kiugrik a függvényből, eljárásból, ciklusból. A kivételkezeléshez kötődő nyelvi kulcsszavakat is ismerjük: try, catch, finally, throw, throws. Ezek működését is ismerjük. Azt feltételezhetjük, hogy a try blokkból kiugrunk true értékkel és a decision() függvényt meghívó main() metódusba visszatérve kiíródik a konzolra, hogy true. Mintha a finally blokk nem is lenne. Nem így történik. A programot futtatva false jelenik meg a konzolon. A kulcsgondolat a finally blokk végrehajtásának vezérléséhez kapcsolódik. Részletes indoklás a blog bejegyzés végén található.

6. fejtörő: Mit ír ki a program a konzolra?

Már biztosan gyanakszunk, de azért a Hello World!-öt várjuk a konzolon. Ehelyett nem jelenik meg semmi. A kulcsszó a puffer ürítés. Részletes indoklás a blog bejegyzés végén található.

Részletes indoklások

  • 1. fejtörő: int típusú literál az 54321, de long típusú literál az 5432l. Az 1 – mint numerikus karakter – nem egyezik meg a kis l betűvel. Tanulság: használjuk nagy L betűt a long típusú literálok végén. További részletek a könyv 11-12. oldalán találhatók.
  • 2. fejtörő: a konkatenálást végző + operátor erősebben kötődik, mint a két objektumreferencia azonosságát eldöntő == operátor. Az első kiírásban látható művelet igazából a második kiírásban látható zárójeles formában kerül végrehajtásra. A harmadik kiírást az magyarázza, hogy a String típusú literálokat memóriacímeik és nem a bennük tárolt karaktersorozat/érték alapján hasonítódnak össze. A helyes gondolatmenet implementálását a negyedik kiírás tartalmazza: (megegyezik-e a két szövegliterál tartalma). További részletek a könyv 29-31. oldalán találhatók.
  • 3. fejtörő: a megjegyzés 3. sorában található \u karaktert 4 db hexadecimális számnak kellene követnie. Ez hiányzik, ami szintaktikai hibát jelent. További részletek a könyv 33-34. oldalán találhatók.
  • 4. fejtörő: az URL-ben lévő : egy ugyanolyan címke, amit a switch utasításban a case ágaknál szokás használni. Ez így is megengedett, de teljesen haszontalan. További részletek a könyv 47-48. oldalán találhatók.
  • 5. fejtörő: a kivételkezelési mechanizmus úgy működik, hogy a try blokkban lévő utasításoktól függetlenül – akár volt kivétel akár nem, akár return utasítást tartalmaz a try blokk – a finally blokk mindenképpen végrehajtódik. Ebben az esetben a kivételkezelési mechanizmus erősebb. További részletek a könyv 77-78. oldalán találhatók.
  • 6. fejtörő: a System.out egy PrintStream osztályú objektum. Többnyire automatikusan ürítik az átmeneti tárolóját az ezt használó utasítások, például System.out.print() és println(). A write() metódus nem üríti ezt a puffert. További részletek a könyv 195-196. oldalán találhatók.

 

További hasonló Java fejtörők, érdekességek

Tanfolyamainkon nem kifejezetten foglalkozunk hasonló problémákkal, de azért időnként feszegetjük a határokat. Természetesen részletesen indokoljuk, ha előkerül valamilyen hasonló eset. Általánosságban nem célunk, hogy extrém eseteken keresztül, a programozási nyelv gyenge pontjaira kihegyezve oktassuk a Java programozási nyelvet.

Ez volt az első rész, bevezető, alapozó szintű példákkal. Jöhet a második rész haladó szintű példákkal.

Egy matematika érettségi feladat megoldása programozással 2017

érettségi logó

érettségi logóA 2017-es középszintű matematika érettségi feladatsor 12. feladata inspirált egy Java program megírására. Szükséges hozzá néhány programozási tétel: sorozatszámítás, megszámolás, valamint adatszerkezetként ideális egy kétdimenziós tömb. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

Egy kockával kétszer egymás után dobunk. Adja meg annak a valószínűségét, hogy a két dobott szám összege 7 lesz! Válaszát indokolja!

Matematikai megoldás

A feladat nagyon egyszerű. Két megoldást ismertet a javítási-értékelési útmutató:

  • Összesen 6 * 6 = 36-féleképpen dobhatunk. Hat olyan dobáspár van, amelyben 7 az összeg: (1; 6), (2; 5), (3; 4), (4; 3), (5; 2) és (6; 1). A keresett valószínűség 6/36-od, vagyis egyhatod.
  • Bármennyit is dobunk elsőre, ezt a második dobás egyféleképpen egészítheti ki 7-re. Így a második dobásnál a hat lehetséges értékből egy lesz számunkra kedvező. A keresett valószínűség egyhatod.

Közelítő megoldások szimulációval

Egy alkalom két kockadobást jelent egymás után. A dobások sorrendje nem számít (alkalmanként és összességében sem). Minél több alkalommal végezzük el a kockadobásokat, annál jobban megközelítjük a fenti valószínűséget (várható értéket, bővebben: nagy számok törvénye). Az egyhatod közelítő értéke a Java double adattípusával 0.16666666666666666.

1. megoldás

Ha nem akarunk emlékezni a dobásokra, összegükre, csupán megszámolnánk, hogy hány olyan dobáspár van, amelyben 7 az összeg, akkor ehhez mindössze egy számláló ciklus kell, aminek a ciklusmagjában két véletlen kockadobás összegét előállítjuk és növelünk egy számlálót/gyűjtőt, ha az éppen 7. Az eredményt a számláló és a ciklus lépésszámának hányadosa adja meg. Például meghívhatjuk a metódust így: kockadobas1(5000); és kaphatjuk eredményül ezt: 5000 alkalomból 7 összegként 836 alkalommal fordult elő. Valószínűség: 0.1672 . A metódus kivételt dob, ha értelmetlen a paramétere. Íme a metódus Java forráskódja:

2. megoldás

Ha egy 13 elemű egész típusú tömböt használhatunk emlékezetként. Kezdetben 2-től 12-ig indexelve nullázzuk ki, így csoportos gyűjtést tudunk megvalósítani. A nullázás most inicializáló blokkal történt, mert nem sok eleme van a tömbnek (sok elemnél inkább használjunk erre ciklust). A tömb első két elemét nem használjuk semmire. Mi történik a ciklusban? Például dobas1=3 és dobas2=4 esetén a dobasDbTomb[7] elemét növeli (mindegy mi volt ott korábban, de inkrementálódjon). Most több adatot tárolunk, mint amiből megválaszolható a feladatban megfogalmazott konkrét kérdés, de ezt tekinthetjük strukturális tartaléknak.

Hasonló, egydimenziós tömbbel történő belső adattárolást megvalósító elosztott alkalmazásról blogoltunk már: Kockadobás kliens-szerver alkalmazás.

3. megoldás

Ez az igazi szimuláció, swing GUI grafikus környezetben, ahogyan az alábbi képernyőképen látható. A megvalósítás kétdimenziós tömböt használ adatszerkezetként. Álljon 7 sorból és 7 oszlopból és legyen i a sor- és j az oszlopindex. A tömb [0][0]-dik elemét nem használjuk semmire. Az első oszlopába ( j=0 és i>0) bekerülhetnek a dobókockán előforduló számok 1-től 6-ig. Hasonlóan az első sorba ( i=0 és j>0) is. Ezek a dobott számok alapján indexek lesznek és az ábrán zöld hátterű cellákba kerültek. A tömb többi eleme kezdetben 0 (nulla), ezek az ábrán fehér hátterű cellák. A szürke hátterű cellák (mellékátló) esetén a dobott számok összege 7 és jól látszik, hogy ez hatféleképpen fordulhat elő a 36-féle eset közül. Például a 2. sor 5. oszlopában lévő szám mutatja, hogy a 10000 alkalomból 274-szer fordult elő az, hogy a dobáspár a (2; 5) lett. A tömb két indexe felcserélhető lenne, mert ez a mellékátlóban lévő számok összegét nem befolyásolja.

Kockadobás program képernyőkép

A programban kiválasztható néhány alkalomból amit szeretnénk, és a Dob nyomógombra kattintva indul el időzítővel a folyamat. Várakoztatás/menet közben piros színnel kiemelve látszik/megfigyelhető, hogy az éppen aktuális dobás hol növeli az értéket/előfordulást/darabszámot. A képernyőképen befejeződött állapot látható. Az eredményt a szürke cellákban lévő számok összegének és az alkalmak számának hányadosa adja meg. Ezt a háttérbeli kétdimenziós tömbben összesítéssel az alábbi Java forráskód-részlet adja meg:

Most lényegesen több adatot tárolunk, mint ami a konkrét válaszhoz kell, de cserébe jól érzékeltethető a csoportos gyűjtés/megszámolás működése. A program grafikus felhasználói felületének felépítését és az eseménykezelés megvalósítását most nem részletezzük.

Eszünkbe juthatna, hogy a program miért dob kétszer 1 és 6 közötti számot egymás után és ezt összegzi, amikor egyetlen 2 és 12 közötti dobással (véletlenszám generálással) megkaphatnánk a dobáspár összegét. Hiszen két db 1 és 6 közötti szám összege mindig 2 és 12 közötti szám. Jó lenne ez az ötlet/megvalósítás? Igen? Nem? Miért? A hozzászólásokhoz várjuk az indoklást.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra: Objektumorientált programozás alkalmaira épülő 29-36. óra: Grafikus felhasználói felület alkalmaihoz kötődik.

Kígyókocka készítése

Kígyókocka

KígyókockaA kígyókocka (snake cube, chain cube) 27 egyforma méretű, egymáshoz képest mozgatható/forgatható kockából áll. A kockákat összeköti egy rugalmas fonal/gumi. Az első és az utolsó kocka egy-egy lapján egy-egy lyuk van. A közbenső kockák hat lapjából kettő lyukas. Fából és műanyagból is készülhetnek. Általában kétféle színnel színezettek a kockák. A cél, hogy a 27 kockát kígyózva „összehajtogatva” a kígyó (lánc) összeálljon egy nagyobb 3x3x3 méretű kockává.

Ez egy két részből álló blog bejegyzés 1. része. A blog bejegyzés 2. része itt található.

A színek – a játék gyártóitól függően – nehézségi szinteket jelölhetnek (zöld, kék, piros, narancs, lila). Léteznek könnyebben és nehezebben megoldható kígyókockák. Előbbieknél többször fordul elő két egymással szemben lévő lyukas lap a közbenső kockákon, utóbbiaknál gyakoribbak az egymással szomszédos lapokon lévő lyukak. Másképpen: előbbiben több a három hosszú egyenes rész, utóbbi szinte állandóan tekereg. Általában a kocka egyik csúcsából kezdjük a megoldást, de az igazán nehéz játékok esetében a kígyó indulhat akár a kocka egyik lapjának (3×3) középső kockájától is.

Vannak olyan kígyókockák, amelyeknek több megoldása is van, azaz többféleképpen is összeállítható kockává. Ezek részletes ismertetése (típusok, gyártók, színek), a megoldások (statikusan és dinamikusan), irányokat mutató jelölésrendszer (Front, Left, Up, Back, Right, Down) elérhető Jaap Scherphuis – holland puzzle rajongó – weboldalán: Jaap’s Puzzle Page.

Kígyókocka

Olyan Java programot készítünk, amely véletlenszerű kígyókockát állít elő.

Tervezés

Szükséges egy háromdimenziós tömb adatszerkezet a kocka tárolására. Több okból is hasznos, ha a tömb mérete 5x5x5. Egyrészt így indexek 0-tól 4-ig futnak és a tömb közepén lévő 3x3x3-as kocka elemei kényelmesen – mátrixszerűen – indexelhetők 1-től 3-ig. Másrészt a tömb közepén lévő 3x3x3-as kocka minden elemére igaz, hogy egységesen van 26 db érvényesen indexelhető szomszédja. A 125 tömbelemből a széleken lévő 98 elem negatív számokkal feltölthető.

A szokásos i, j, k egységvektor rendszerben (koordináta-rendszerben) gondolkodva, i és j a képernyő síkját, k pedig a mélységet jelenti. A k-val 0-tól 4-ig „szeletelve” a tömböt, öt db négyzetet/mátrixot kapunk az alábbiak szerint. A színes tömbelemek negatív számokkal kerülnek feltöltésre, a kígyó útját határolják mindhárom irányból:

Kígyókocka tervezés

A belül lévő – fehér színű – 3x3x3-as kocka/tömb elemeit kezdőértékként célszerű 0-val feltölteni.

A szomszédos kockák kiválasztása során csak a középen lévő kocka 6 db lapszomszédját kell figyelembe venni. A középen lévő (a következő ábrán nem látszó) kocka három tengely szerinti 2-2-2 szomszédos kockája különböző színekkel jelölt.

Kígyókocka tervezés

Él- és csúcsszomszédság esetén nem tud tekeredni a kígyó. A forduláshoz/tekeredéshez legalább 3 – a kígyóban egymás utáni – kocka szükséges. Az aktuális kockának – pozíciójától függően – legfeljebb 6 lapszomszédja lehet. Ezt csökkenti, ha a kocka valamelyik csúcsban helyezkedik el, illetve menet közben is – ahogyan egyre hosszabb lesz a kígyó – folyamatosan csökken a még szabad elemek száma.

A megoldás során a belül lévő – fehér színű – 3x3x3-as kocka/tömb elemeit kell sorszámozni 1-től 27-ig, jelölve ezzel a kígyó útját. A kezdetben 0-val jelölt szabad elemek végül elfogynak.

Megállapodunk abban, hogy a kígyó az útját az (1, 1, 1) pozícióban kezdi és az 1 sorszámot kapja. Addig kell újabb szomszédos kockákat – egyesével haladva – kiválasztani módszeresen vagy véletlenszerűen próbálkozva, vagy akár visszalépéses algoritmussal is, amíg mind a 27 kiválasztásra kerül.

Megvalósítás

Létre kell hozni a háromdimenziós tömböt példányváltozóként:
int[][][] cube=new int[5][5][5];

A cubeInit() metódus kezdetben feltölti a tömb elemeit. A széleken lévő elemekbe különböző negatív értékek kerülnek, hogy jól megkülönböztethető legyen, melyik ciklus melyik pozíciókért felel. Másképpen is lehetne: például kezdetben minden elem -1, utána a belül lévők felülírhatók 0-val.

Hasznos a cubePlot() metódus, amellyel megjeleníthetők a konzolon a tömb elemei (állapota):

A getNextNeighbour() függvény egydimenziós tömbként ( int[]) visszaadja a paramétereként átvett – x, y, z koordinátával jelölt – kocka egyik kiválasztott szomszédját, amely a kígyó útját jelöli. A kiválasztás történhet módszeresen vagy véletlenszerűen próbálkozva, vagy akár visszalépéses algoritmussal is. A metódus forráskódját most nem részletezem. A metódus felelős a kígyó helyes útvonaláért, azaz a kiválasztás során a kígyó nem rekedhet meg zsákutcában, másképpen nem haraphatja meg saját magát.

A vezérlést a run() metódus végzi el az alábbiak szerint:

Addig fut a ciklus, amíg a kígyó nem tölti ki a 3x3x3-as kockát (másképpen: amíg a kígyó nem éri el a maximális hosszúságot). A tömb állapotát kezdetben és lépésenként is kiíratja a vezérlő metódus a konzolra.

Konzolos eredmény

A konzolos eredmény előállításánál fontos volt, a tömb változásait tudjuk követni. Az összes negatív szám elhagyható lehet a kiírásból, ha meggyőződtünk az implementált algoritmus helyes működéséről. Átlátva a problémát, a megoldás könnyen elállítható egy grafikus és/vagy egy irányokat mutató jelölésrendszer szerint is, például:

Kígyókocka tervezés

Hivatkozások

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik. Több alkalommal is tudunk ezzel a feladattal foglalkozni, attól függően, hogy a getNextNeighbour() függvény működését hogyan tervezzük és implementáljuk:

  • A 13-16. óra: Tömbök témakör esetén a szomszédos kockák közül módszeresen – azonos sorrendben haladva a legfeljebb 6 lehetséges szomszéd közül – választjuk ki mindig az elsőt. Ekkor mindig ugyanazt az egyetlen helyes megoldást kapjuk meg.
  • A 17-28. óra: Objektumorientált programozás témakör esetén atipikusan a kivételkezelést használhatjuk vezérlésre úgy, hogy a lehetséges szomszédos kockák közül mindig véletlenszerűen választunk. Ekkor a kígyó önmagába harapását úgy előzzük meg, hogy tömb túlindexelésekor keletkező kivételt benyeljük és újrakezdjük a feladatot mindaddig, amíg találunk egy olyan megoldást, aminek lépései közben nem keletkezik kivétel.
  • Az orientáló modul 9-12. óra: Mesterséges intelligencia témakör esetén véletlenszerű kocka kiválasztási stratégiával rendelkező visszalépéses algoritmust specifikálhatunk és implementálhatunk. Ez lényegesen összetettebb feladat és mindig helyes megoldást ad több lehetséges megoldás közül.

Ez egy két részből álló blog bejegyzés 1. része. A blog bejegyzés 2. része itt található.