Kutatók éjszakája 2020

Kutatók éjszakája logó

Kutatók éjszakája logóA Kutatók éjszakája nemzetközi rendezvénysorozat 2005-ben indult. Magyarország 2006-ban csatlakozott. Azóta évről-évre egyre több intézmény nyitja meg hazánkban kapuit, szervez érdekes programokat, sok-sok településen, több száz helyszínen, több ezer eseményt meghirdetve sok tízezer érdeklődő/résztvevő látogatónak biztosít tartalmas estét.

Bár a kezdeményezés elsősorban a kutatói pálya népszerűsítését szolgálja, ezért leginkább a tizen- és huszonévesekre számít, az események vonzók és elég érdekesek ahhoz, hogy a kisgyerekektől a legidősebbekig mindenki megtalálja a számára izgalmas programokat. Korábban nagyobb felsőoktatási intézmények és kutatóintézetek szerepeltek döntően, de az utóbbi néhány évben egyre több kisebb intézmény, tehetséggondozással foglalkozó középiskola, cég, egyesület is csatlakozott a rendezvényhez. A Kutatók éjszakája rendezvény minden meghirdetett programja ingyenes.

Rendezvényünk plakátja

Az it-tanfolyam.hu 2020-ban is csatlakozott. Három oktatónk hirdetett öt programot a kutatokejszakaja.hu weblapon. Az eseményekre regisztrálni kellett a weblapon, ami talán szervezőként ránk keresve bizonyult legegyszerűbbnek. A regisztrációs időszak november 16-26-ig tartott és a programjainkra november 27-én 17:40-20:50 óráig került sor. Az élő közvetítés linkjét a programra regisztráltak e-mail-ben megkapták. Néhány online látogatónk jelzéséből megtudtuk, hogy ez a folyamat sajnos nem volt zökkenőmentes. Valószínűleg ennek az lehetett az oka, hogy a központi honlap még azután is engedte a regisztrációt a meghirdetett programokra, miután kiküldtük az élő közvetítés linkjét. Tőlük ezúttal is elnézést kérünk.

Terveztük, hogy az előadások élő közvetítését rögzíteni fogjuk és tanfolyamaink hallgatói számára – a kapcsolódó témakörökhöz, ILIAS-ra feltöltve – elérhetővé tesszük. A központi honlap szervezői a rendezvény előtt néhány órával (pénteken 10 órakor) körlevélben értesítettek mindenkit az alábbiak szerint: „Nem készíthetnek és nem tölthetnek fel semmilyen webhelyre vagy fórumra olyan videót vagy felvételt, amelyen a becsatlakozó látogató felismerhető, azaz az arca látszik, neve felismerhető, hangja nevéhez vagy arcához köthető, azaz a személy azonosítható. Ezért rögzíteni bármit csak úgy szabályos, ha erre külön beszerzik a résztvevők hozzájárulását. Amennyiben rögzítésre sor kerülne, felhívjuk a figyelmet arra is, hogy kiskorúak esetében a törvényes képviselőktől is szükséges a hozzájáruló nyilatkozat beszerzése. Hozzájárulás hiányában a felvétel rögzítése, közlése úgy lehet szabályos, ha azon a résztvevők bármilyen technika segítségével felismerhetetlenek, azaz kitakarásra, anonimizálásra kerülnek.” Sajnos erre nem készültünk fel előre és aznap már nem tudtuk megoldani a hozzájáruló nyilatkozatok beszerzését. Ezért az élő közvetítést nem rögzítettük. Ezt kifejezetten sajnáljuk, hiszen sok-sok előkészítő munkát fektettünk bele és a meghirdetett öt programból három teljesen újonnan összeállított anyag volt, egy korábbit frissítettünk és egy pedig igazi örökzöld téma. Természetesen a prezentációkat elérhetővé tettük tanfolyamaink hallgatói számára.

17:40-18:10 – Kaczur Sándor: Szoftverek architekturális tervezésének szempontjai
Az előadás áttekinti, hogyan válasszunk az ismert/tipikus tervezési minták közül és válaszokat ad a következő kérdésekre. Legalábbis megpróbálja. Mekkora a mozgástér a választás során? Mikor jó az MVC? Mikor kell a Factory? Mikor nem jó a Bridge? Mikor hasznos a Chain-of-responsibility? Hogyan csoportosítsuk az igényeinket? Hogyan osszunk szét jól specifikált funkciókat az alkalmazás rétegei között? És vajon mi a teendő kevésbé körültekintő specifikáció esetén? Milyen alapvető modulok állnak rendelkezésre? Minden célszerű ismerni ahhoz, hogy vállalható döntést tudjunk hozni? Hogyan osszunk szét funkciókat a szerver és a kliens oldal között? Mekkora strukturális redundancia kell/hasznos elosztott alkalmazások esetén? Hogyan értékelhető egy szoftver architekturális terve? Lehet két hasonló? Ha igen, melyik lehet a jobb? Ha nem, miért nem? Hogyan kell(ene) dokumentálni egy szoftver architekturális tervét? A program a Java tanfolyamaink orientáló moduljához kötődik.

18:20-18:50 – Kaczur Sándor: Java kollekciók hatékonysága
Adott egy ismert algoritmus egy ismert problémára. A gyakorlati bemutató példákat mutat arra, hogy az ismert Java kollekció keretrendszer különböző adatszerkezeteinek funkcionalitását/szolgáltatásait felhasználva mennyire eltérő megoldásokat tudunk készíteni. Mindegyik megoldás ugyanazt az eredményt adja, de alapjaiban más gondolatmenettel születtek. Vajon melyik tekinthető hatékonyabbnak? Mennyi tárhelyet igényelnek? Mennyi idő alatt hajtódnak végre? Mennyire bonyolultak, azaz mennyire könnyű/nehéz megérteni/dokumentálni/elmagyarázni? Előkerülnek különböző Set, Queue, List, Map implementációk, programozási tételek. Amit csak lehet, mérünk, összehasonlítunk, elemzünk. Végül az eredmények alapján javaslatokat adunk: mikor, miért, mit (mit ne), hogyan (hogyan ne) használjunk. A program a Java SE szoftverfejlesztő tanfolyamunk tematikájához kötődik.

19:00-19:30 – Kaczur Sándor: Reflexjátékot fejlesztünk
Játékprogramot tervezünk és fejlesztünk, grafikus felülettel. Egy 2×2, 3×3, …, 9×9 négyzetrács alkotja a játékteret, ahol minden négyzet színnel kitöltött. A kitöltés véletlenszerű, de annyiban manipulált, hogy a színek minél különbözőbbek legyenek. A játékmenet során minél gyorsabban ki kell választani a rácsban az egyik négyzetet. Azt, amelyik ugyanolyan színű, mint egy minta. A rács miatt a játék egyre nehezebb. Ez az alapeset, tekintsük ingyenes 1.0-ás verziónak. Ötletelünk a továbbfejlesztési lehetőségek között. Például beépíthetnénk időkorlátot: a teljes játékmenetre globálisat, vagy akár négyzetrácsonként lokálisat is. Csalhatnánk is, akár többféleképpen is. Tűnhetnénk engedékenynek azzal, hogy nem a pontos találatokat számoljuk össze, hanem a hasonló színek is pontot érnek, de arányosan kevesebbet, minél inkább különböznek. Skálázhatjuk a pontszámot, például százalékosan. A megjelenítést GUI kliensprogram végzi, amely a feladatokat a szervertől kapja, amely pontoz is. A program a Java EE szoftverfejlesztő tanfolyamunk tematikájához kötődik.

19:40-20:10 – Szegedi Kristóf: Mihez kezdhetünk a kétszeresen kivételes tanulókkal?
Áttekintjük milyen az, amikor találkozik a tehetség és a deficit. Hiszen a természet általában kompenzál. Hogyan vegyük észre? Hogyan éljünk vele (a lehetőséggel)? Hogyan profitáljunk belőle? Milyen soft skillek fedhetik (legalább részben) el a deficitet? Milyen tréningek javasolhatóak? Hogyan bontakoztatható ki a tehetség? Három főbb kategóriát érint az előadás: Asperger-szindróma, ADHD-szindróma, tanulási zavar. Renzulli, Czeizel, Csíkszentmihályi tehetségmodelljeiből kiindulva fokozatosan közelítünk Bagdy Emőke tehetség kibontakozási koncepciójához. Ismertetünk néhány tipikus, atipikus, kritikus és paradigmatikus esetet. Vajon Einstein, Darwin, Michelangelo, Newton, Hitchcook, Cher, Daryl Hannah, Steve Jobs miben volt tehetséges és deficites? Miben különleges a Pokémon Go megalkotója? Előkerül az Esőember, Dr. Murphy és persze Dr. Sheldon Cooper sem maradhat ki.

20:20-20:50 – Kiss Balázs: Gondolkodjunk logikusan!
Az előadás során áttekintjük az intelligencia, a kreatív problémamegoldó és logikus gondolkodás összefüggéseit és izgalmas feladatokból válogatva közösen megoldunk néhány fejtörő feladatot.

 

A programjaink népszerűek voltak. A Google Meet online platformon kb. 80-an csatlakoztak. A többség több programon is részt vett. Néhányan kifejezetten egy-egy adott program iránt érdeklődtek. Az online platform sokaknak újdonságot jelentett, de azért a chat felületen élénk kérdezz-felelek párbeszéd zajlott. Ahogyan számítottunk rá, markánsan más célközönséget vonzott az első három és az utolsó kettő programunk. Köszönöm oktató kollégáimnak, hogy örömmel csatlakoztak. Külön köszönöm Hollós Gábor kolléga előkészítő tevékenységét, valamint a rendezvény ideje alatt a technikai ügyelet biztosítását. Mindannyian jól éreztük magunkat. Igazán tartalmas esti programot állítottunk össze. Nem akartunk pusztán előre felvett videókat megosztani. Megvolt a varázsa az élő közvetítésnek, hiszen így sokkal személyesebb és interaktív élményt jelentett. Szívesen emlékszünk majd rá. Jövőre talán már az offline világban is szervezhetünk eseményeket, tarthatunk rendezvényeket.

Dr. Sheldon Cooper szólánc játéka

Sheldon, Agymenők

Sheldon szólánc kiemelt képDr. Sheldon Cooper karakterét nem kell bemutatni. Az Agymenők (The Big Bang Theory) című sorozat 2. évad 5. epizódjának címe A vitatkozás nagymestere (The Euclid Alternative). Nagyon találó az epizód címe magyarul. Miközben Penny reggel Sheldont munkába viszi, Sheldon az autóban kémiai elemek nevéből álló szólánc játékával különösen Penny agyára megy (pedig a játékot Penny nyeri ?):

A játék során Sheldon az alábbi kémiai elemeket mondja:

  • magyar nyelven: Hélium ↦ Mangán ↦ Neptúnium ↦ Magnézium ↦ Molibdén ↦ Nitrogén ↦ Nobélium ↦ Mendelévium
  • angol nyelven: Helium ↦ Mercury ↦ Ytterbium ↦ Molybdenum ↦ Magnesium ↦ Manganese ↦ Europium ↦ Mendelevium

Támogassuk meg ezt a játékot! Készítsünk olyan programot Java nyelven, ami segít(ene) felkészülni Sheldon szólánc játékára!

A szükséges lépések áttekintése

  • Gyűjtsük össze a kémiai elemek nevét magyar nyelven a Wikipédia – Kémiai elemek listája szócikkéből és rendezzük ábécé sorrendbe!
  • Építsük be az elemlistát a program adatmodelljébe!
  • Indítsuk el a lépésszámláló nulláról! Ha a lépésszámláló páros, akkor az ’A’ játékos, egyébként a ’B’ játékos lép.
  • Készítsük elő a játékmenet tárolására alkalmas adatszerkezetet, szöveget, listát!
  • Kezdetben kínáljuk fel a teljes elemlistát úgy, hogy mindig egy és csak egy legyen belőle kiválasztható!
  • A kiválasztást követően tároljuk el a játékmenetben az elemet, töröljük ezt az elemlistából, majd kínáljuk fel azoknak az elemeknek a listáját, amelyek kezdőbetűje megegyezik az előzőleg kiválasztott elem utolsó betűjével és növeljük meg a lépésszámlálót!
  • Amíg a felkínálható elemek listája nem üres, addig az előző lépést ismételjük meg!
  • A játék végén az nyert, aki a játékmenet utolsó elemét választotta ki. Írjuk ki a nevét és a lépésszámot!

A grafikus felületű megvalósítás képernyőképe rövid játékmenettel

Ötletek a megvalósításra és a továbbfejlesztésre

  • A program Java nyelven konzolos menükezeléssel, asztali alkalmazásként swing-esen többféle GUI komponens használatával és eseménykezeléssel, böngészőben futó JSP webalkalmazásként többféle űrlapmezővel, illetve HTML+CSS+JavaScript alapon is implementálható.
  • A kémiai elemek listája lecserélhető az angol nevekre. Ekkor figyeljünk arra, hogy a kis- és nagybetűket ne különböztessük meg az utolsó-első betű párosítása során.
  • Lehet a játék bármikor megszakítható, illetve a vége után újrakezdhető.
  • A program mérhetné a játék során az eltelt időt.
  • A program lehetne peer-to-peer vagy szerver-kliens elosztott és megvalósíthatna hálózatos kommunikációt.
  • A program mobil alkalmazásként is implementálható.

A bejegyzéshez tartozó teljes forráskódot – többféle változatban is – ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Többféleképpen is hozzájuthatunk az adatokhoz attól függően, hogy milyen előismeretekkel rendelkezünk a különböző tanfolyamainkon:

  • A Java SE szoftverfejlesztő tanfolyamon dolgozhatunk szövegtömbbel, generikus kollekcióval (listával/halmazzal), konzolos és swing-es változatot is készíthetünk. Ehhez a feladathoz objektumorientált alapok mindenképpen szükségesek. Kézzel előállított szövegfájlból olvasva (mentve a Wikipédia oldaláról a táblázatot) hozzájuthatunk a kémiai elemek nevéhez, amihez kivételkezelés is szükséges.
  • A Java EE szoftverfejlesztő tanfolyamon megvalósítható, hogy a program kivételkezeléssel hálózati kapcsolatot épít, majd közvetlenül olvassa és/vagy menti a Wikipédia HTML tartalmából a kémiai elemek nevét szövegfájlba vagy generikus kollekcióba, amivel a feladat visszavezethető az SE szemléletű megközelítésre. Böngészőben futó JSP és/vagy Servlet technológiára építő webalkalmazásként is megvalósítható a feladat.

Kígyókocka grafikus felületen

Kígyókocka

KígyókockaA JavaFX grafikus felhasználói felületének és eseménykezelésének megvalósítása némileg eltér más Java GUI implementációk működésétől, például swing vagy Java3D. Főként animációk során hasznos használni. Megközelítése természetesen objektumorientált: a térbeli objektumok koordinátái, viselkedésük, transzformációkkal valósul meg, és azok is objektumok. A korábban elkészített konzolos kígyókocka programot valósítjuk meg most JavaFX GUI-val.

Ez egy két részből álló blog bejegyzés 2. része. A blog bejegyzés 1. része itt található.

A program működése

Kígyókocka JavaFX grafikus felületen

A program megvalósítása

A start() JavaFX életciklust indító eljárás felépíti a createGridUI() függvényt meghívva a felhasználói felületet (színpad/jelenet JavaFX-ben), beállítva a méreteket, címsort, és meghívja az eseménykezelésért felelős handleRotateButtons() eljárást.

A createGridUI() függvény a grafikus felhasználói felület elemeit paraméterezi (szerepe szerint Factory metódus). Öt elemből álló rács ( GridPane osztályú grid nevű objektum) készül el, amelyre nyilakat tartalmazó nyomógombok (pl.: Button típusú btLeft objektum) kerülnek fel a négy égtájnak megfelelően, valamint rajta középen helyezkedik el a kígyókocka 3D megjelenítését megvalósító objektum. A nyilak entitásai az Unikód karaktertáblából származnak. A kígyókocka objektumot a meghívott createSnakeCube() függvény hozza létre. A Node osztályú snakeCube nevű objektum geometriai transzformációs objektumot is hozzá kell rendelni: ez most a négyirányú forgatást megvalósítani képes névtelen Rotate osztályú objektum lesz. A forgatást 5 paraméterrel célszerű beállítani (van rá megfelelő túlterhelt konstruktor), ezek rendre: szög, X, Y, Z tengely origója és a forgatás tengelye. Az objektumok tulajdonosi hierarchiája swing-es szemmel nézve szokatlannak tűnik, de szemléletben legalább azonos a Java3D és a JavaFX megvalósítás.

A createSnakeCube() függvény előállítja a színpadra/jelenetbe kikerülő kígyókockát Node osztályú objektumként. A konstans CUBE tömb egységvektor rendszerben tartalmazza a kígyót alkotó kockák középpontjait. Az első ciklus mindezt nagyítást alkalmazva skálázza. A második ciklus koordináta és pont transzformációk alkalmazásával ( moveToMidPoint: eltolás középre, rotateAroundCenter: forgatás a középpont körül) a kiinduló állapotnak megfelelő méretben és pozícióban elhelyezi a kígyó útvonalát mutató hengerobjektumokat. A konstrukciós és transzformációs műveletek esetén alkalmazkodni kell ahhoz, hogy a JavaFX koordinátarendszerben az X jobbra, az Y lefelé, a Z pedig befelé (a nézőponttól távolodva a térben) növekszik. A matematikai hátteret részletesen most nem magyarázzuk el.

A handleRotateButtons() eljárás a forgatás 4 nyíl eseménykezelésének hozzárendelést végzi el. A nyomógomb objektumok setOnAction() hozzárendelő metódusának paramétere EventHandler funkcionális interfésszel és lambda művelettel működik. A forgatás irányát hozzárendeljük a megfelelő nyomógombhoz. Ez még csak végrendelkezés a jövőre: csak definiáljuk, hogy minek kell majd történnie, ha bekövetkezik az esemény (valamelyik nyílra/nyomógombra kattint a felhasználó).

A rotateSnake() eljárás minden nyíl feliratú nyomógombra kattintva reagál a bekövetkezett eseményre. A rotateAxis objektum a forgatás tengelye, a paraméterként átvett direction enum-tól függ, szinkronban azzal a nyomógombbal, amelyikre kattintott a felhasználó.

Ötletek a továbbfejlesztésre

  • Lehetne többféle irány is, például a négy sarokba átlós vagy mélységi irányú elforgatással.
  • Beépülhetne többféle transzformáció is, például skálázás (kicsinyítés, nagyítás), eltolás (közelítés, távolítás).
  • A kígyó útvonalát mutató hengerobjektumok kirajzolásának sorrendjén lehetne változtatni, mert a megjelenítés nem tökéletes. Jelenleg néhány helyzetben lehetetlennek, Escher lehetetlen konstrukcióihoz hasonlónak tűnhet a kígyókocka. Ha a tér mélységéből a nézőpont felé közeledve rajzolnánk ki a hengerobjektumokat, akkor a 3D látvány nem sérülne.

Tanfolyamainkon JavaFX grafikus felülettel hangsúlyosan nem foglalkozunk, de egy-egy kész forráskódot közösen megbeszélünk, és össze is hasonlítjuk a swing-es változattal. Fejlesztünk játékprogramot, de inkább konzolosan, vagy swing-es ablakban, vagy webes alkalmazásként.

A grafikus felületek felépítésének megismerése fontos lépcső az objektumorientált programozás elmélyítéséhez, gyakorlásához. A grafikus felületekhez egy másik lényeges szemléletváltás is kapcsolódik, hiszen a korábbi algoritmusvezérelt megközelítést felváltja az eseményvezérelt (eseménykezelés).

Tudatosan hangsúlyozott MVC-s projektben megoldva a feladatot, a modell rétegben tárolhatnánk többféle kígyókocka megjelenítéséhez és animációjához szükséges adatszerkezetet és transzformációs objektumokat/metódusokat is és a nézet/vezérlő rétegekben biztosíthatnánk ezek közül a kijelölést/kiválasztást menüvel, ikonokkal, eszköztárral, gyorsbillentyűkkel.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Tanfolyamaink orientáló moduljának 9-12. óra: Mesterséges intelligencia alkalmához kapcsolódóan a kígyókocka véletlenszerű előállítása helyett stratégiával rendelkező visszalépéses algoritmust specifikálhatunk és implementálhatunk.

Ez egy két részből álló blog bejegyzés 2. része. A blog bejegyzés 1. része itt található.

Kígyókocka készítése

Kígyókocka

KígyókockaA kígyókocka (snake cube, chain cube) 27 egyforma méretű, egymáshoz képest mozgatható/forgatható kockából áll. A kockákat összeköti egy rugalmas fonal/gumi. Az első és az utolsó kocka egy-egy lapján egy-egy lyuk van. A közbenső kockák hat lapjából kettő lyukas. Fából és műanyagból is készülhetnek. Általában kétféle színnel színezettek a kockák. A cél, hogy a 27 kockát kígyózva „összehajtogatva” a kígyó (lánc) összeálljon egy nagyobb 3x3x3 méretű kockává.

Ez egy két részből álló blog bejegyzés 1. része. A blog bejegyzés 2. része itt található.

A színek – a játék gyártóitól függően – nehézségi szinteket jelölhetnek (zöld, kék, piros, narancs, lila). Léteznek könnyebben és nehezebben megoldható kígyókockák. Előbbieknél többször fordul elő két egymással szemben lévő lyukas lap a közbenső kockákon, utóbbiaknál gyakoribbak az egymással szomszédos lapokon lévő lyukak. Másképpen: előbbiben több a három hosszú egyenes rész, utóbbi szinte állandóan tekereg. Általában a kocka egyik csúcsából kezdjük a megoldást, de az igazán nehéz játékok esetében a kígyó indulhat akár a kocka egyik lapjának (3×3) középső kockájától is.

Vannak olyan kígyókockák, amelyeknek több megoldása is van, azaz többféleképpen is összeállítható kockává. Ezek részletes ismertetése (típusok, gyártók, színek), a megoldások (statikusan és dinamikusan), irányokat mutató jelölésrendszer (Front, Left, Up, Back, Right, Down) elérhető Jaap Scherphuis – holland puzzle rajongó – weboldalán: Jaap’s Puzzle Page.

Kígyókocka

Olyan Java programot készítünk, amely véletlenszerű kígyókockát állít elő.

Tervezés

Szükséges egy háromdimenziós tömb adatszerkezet a kocka tárolására. Több okból is hasznos, ha a tömb mérete 5x5x5. Egyrészt így indexek 0-tól 4-ig futnak és a tömb közepén lévő 3x3x3-as kocka elemei kényelmesen – mátrixszerűen – indexelhetők 1-től 3-ig. Másrészt a tömb közepén lévő 3x3x3-as kocka minden elemére igaz, hogy egységesen van 26 db érvényesen indexelhető szomszédja. A 125 tömbelemből a széleken lévő 98 elem negatív számokkal feltölthető.

A szokásos i, j, k egységvektor rendszerben (koordináta-rendszerben) gondolkodva, i és j a képernyő síkját, k pedig a mélységet jelenti. A k-val 0-tól 4-ig „szeletelve” a tömböt, öt db négyzetet/mátrixot kapunk az alábbiak szerint. A színes tömbelemek negatív számokkal kerülnek feltöltésre, a kígyó útját határolják mindhárom irányból:

Kígyókocka tervezés

A belül lévő – fehér színű – 3x3x3-as kocka/tömb elemeit kezdőértékként célszerű 0-val feltölteni.

A szomszédos kockák kiválasztása során csak a középen lévő kocka 6 db lapszomszédját kell figyelembe venni. A középen lévő (a következő ábrán nem látszó) kocka három tengely szerinti 2-2-2 szomszédos kockája különböző színekkel jelölt.

Kígyókocka tervezés

Él- és csúcsszomszédság esetén nem tud tekeredni a kígyó. A forduláshoz/tekeredéshez legalább 3 – a kígyóban egymás utáni – kocka szükséges. Az aktuális kockának – pozíciójától függően – legfeljebb 6 lapszomszédja lehet. Ezt csökkenti, ha a kocka valamelyik csúcsban helyezkedik el, illetve menet közben is – ahogyan egyre hosszabb lesz a kígyó – folyamatosan csökken a még szabad elemek száma.

A megoldás során a belül lévő – fehér színű – 3x3x3-as kocka/tömb elemeit kell sorszámozni 1-től 27-ig, jelölve ezzel a kígyó útját. A kezdetben 0-val jelölt szabad elemek végül elfogynak.

Megállapodunk abban, hogy a kígyó az útját az (1, 1, 1) pozícióban kezdi és az 1 sorszámot kapja. Addig kell újabb szomszédos kockákat – egyesével haladva – kiválasztani módszeresen vagy véletlenszerűen próbálkozva, vagy akár visszalépéses algoritmussal is, amíg mind a 27 kiválasztásra kerül.

Megvalósítás

Létre kell hozni a háromdimenziós tömböt példányváltozóként:
int[][][] cube=new int[5][5][5];

A cubeInit() metódus kezdetben feltölti a tömb elemeit. A széleken lévő elemekbe különböző negatív értékek kerülnek, hogy jól megkülönböztethető legyen, melyik ciklus melyik pozíciókért felel. Másképpen is lehetne: például kezdetben minden elem -1, utána a belül lévők felülírhatók 0-val.

Hasznos a cubePlot() metódus, amellyel megjeleníthetők a konzolon a tömb elemei (állapota):

A getNextNeighbour() függvény egydimenziós tömbként ( int[]) visszaadja a paramétereként átvett – x, y, z koordinátával jelölt – kocka egyik kiválasztott szomszédját, amely a kígyó útját jelöli. A kiválasztás történhet módszeresen vagy véletlenszerűen próbálkozva, vagy akár visszalépéses algoritmussal is. A metódus forráskódját most nem részletezem. A metódus felelős a kígyó helyes útvonaláért, azaz a kiválasztás során a kígyó nem rekedhet meg zsákutcában, másképpen nem haraphatja meg saját magát.

A vezérlést a run() metódus végzi el az alábbiak szerint:

Addig fut a ciklus, amíg a kígyó nem tölti ki a 3x3x3-as kockát (másképpen: amíg a kígyó nem éri el a maximális hosszúságot). A tömb állapotát kezdetben és lépésenként is kiíratja a vezérlő metódus a konzolra.

Konzolos eredmény

A konzolos eredmény előállításánál fontos volt, a tömb változásait tudjuk követni. Az összes negatív szám elhagyható lehet a kiírásból, ha meggyőződtünk az implementált algoritmus helyes működéséről. Átlátva a problémát, a megoldás könnyen elállítható egy grafikus és/vagy egy irányokat mutató jelölésrendszer szerint is, például:

Kígyókocka tervezés

Hivatkozások

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik. Több alkalommal is tudunk ezzel a feladattal foglalkozni, attól függően, hogy a getNextNeighbour() függvény működését hogyan tervezzük és implementáljuk:

  • A 13-16. óra: Tömbök témakör esetén a szomszédos kockák közül módszeresen – azonos sorrendben haladva a legfeljebb 6 lehetséges szomszéd közül – választjuk ki mindig az elsőt. Ekkor mindig ugyanazt az egyetlen helyes megoldást kapjuk meg.
  • A 17-28. óra: Objektumorientált programozás témakör esetén atipikusan a kivételkezelést használhatjuk vezérlésre úgy, hogy a lehetséges szomszédos kockák közül mindig véletlenszerűen választunk. Ekkor a kígyó önmagába harapását úgy előzzük meg, hogy tömb túlindexelésekor keletkező kivételt benyeljük és újrakezdjük a feladatot mindaddig, amíg találunk egy olyan megoldást, aminek lépései közben nem keletkezik kivétel.
  • Az orientáló modul 9-12. óra: Mesterséges intelligencia témakör esetén véletlenszerű kocka kiválasztási stratégiával rendelkező visszalépéses algoritmust specifikálhatunk és implementálhatunk. Ez lényegesen összetettebb feladat és mindig helyes megoldást ad több lehetséges megoldás közül.

Ez egy két részből álló blog bejegyzés 1. része. A blog bejegyzés 2. része itt található.