Népesedési világnap

Népesedési világnap logó

Népesedési világnap logóAz ENSZ 1987-ben július 11-ét a népesedési világnappá (World Population Day) nyilvánította. Bolygónk lakossága aznap érte el az 5 milliárdot. További kerek számok voltak: 1999. október 12-én 6 milliárd, 2011. október 30-án 7 milliárd. További kerek számok várhatóak: 2023 – 8 milliárd, 2037 – 9 milliárd, 2057 – 10 milliárd. A KSH elemzése részletes elemzéseket közöl évről-évre a témában, például: 2019-ben, 2018-ban. A worldometer.info weboldalon folyamatosan frissülő kimutatások érhetők el a népességhez globálisan, valamint országonként is: például Magyarország aktuális népesedési adatai.

A népesedési világnap inspirált egy Java program megtervezésére és megírására. A swing GUI-s program megjeleníti a worldometer.info weboldalról kinyerhető adatok alapján régiónként (kontinensenként) az elérhető adatokat 1950-től 2020-ig az alábbiak szerint egy világtérképen.

Az elkészült program

Népesedési világnap Java program

Tervezés

Objektumorientált szemlélettel, MVC architekturális tervezési mintát követünk, angol nyelvű interfész, osztály, változó, objektum, metódus nevekkel. A projekt neve: WorldPopulation, a csomag neve: worldpopulation. Amit lehet, konstansként interfészbe (szeparálva) teszünk és az MVC rétegekhez kötődő osztályok implementálják. A modell minden évszámhoz tárolja a szükséges adatokat, mindezt egyetlen betöltéssel/letöltéssel éri el. A program kliensként hat régióra vonatkozó adatot gyűjt össze, alkalmazkodva a szerver adatforráshoz. A címsorban lévő összesített adat is elérhető közvetlenül a weboldalon, de a kisebb adatforgalom érdekében hasznos inkább a kliensben összesíteni. Mindössze egyetlen eseménykezelés szükséges: a csúszka beállításával megadott évszám alapján frissíteni kell a régiók címkéit és az ablak címsorát. Öröklődés hasznos a feladat megoldása során: egyrészt interfészek, másrészt osztályok között.

Interfészek

Az ősinterfész a WorldPopulationConstants, benne az évszám intervallum MIN_YEAR és MAX_YEAR határaival, valamint a megjeleníthető régiók neveivel tömbben: REGION_NAME_ARRAY. Két utódinterfész épül az ősre: ModelConstants és ViewConstants. Előbbi interfész az adatforráshoz kapcsolódik: URL_COMMON az URL eleje, URL_ARRAY az URL végei régiónként tömbben. Utóbbi interfész a megjelenítéshez kapcsolódik: WORLD_MAP_IMAGE a háttérkép annak WORLD_MAP_RECT méretével együtt, valamint a régiónkénti REGION_RECT_ARRAY téglalapok tömbje a kezdeti pozíciókkal/méretekkel, TITLE a sablon a program címsorához (frissítendő az évszámmal és az összesített népességgel). A megfelelő utódinterfészt mindig implementálja az MVC szerint hozzá illeszkedő osztály.

Osztályok

A belépési pont a WorldPopulation.java fájlban található.

Három összetartozó elemi adatot fog össze egybe a RegionData POJO, ezek name, year, population nevű rendre String, int, long típusú adatok. Például: Európa, 2020, 747643253. Tartalmaz két függvényt: getPopulation(), valamint toString(). Utóbbi HTML formátumban adja vissza a megjelenítendő adatokat.

A JLabel-ből származik az igényekhez alakított RegionLabel osztály. Ennek van előre megadott pozíciója, mérete, betűtípusa, betűmérete, sárga háttérszíne, piros kerete. Ezenkívül a téglalap átlátszó, valamint a benne megjelenő HTML tartalom vízszintesen középre igazított. Némi extra funkció, hogy egérrel megfogva – drag and drop – áthelyezhető, ami a MouseMotionListener egérmozgást figyelő interfész mouseDragged() metódusának felülírásával válik lehetővé. A mozgathatóságáért saját maga felel. Példaként közöljük az osztály teljes forráskódját:

A webről adatokat szerez és tárolja a Model osztály, a java.io és java.net csomagokra építve. Egy példa: a https://www.worldometers.info/world-population/europe-population/ oldal forrásából nyeri ki az osztály az alábbi adatokat:

Ezek parszolását követően elkészül egy optimálisnak tekinthető, generikus listákból álló regionListArray tömb adatszerkezet. A parszolás történhet egyszerű szövegkezeléssel vagy JSON feldolgozással is. Erre épülnek a konstruktorral és vezérlővel összehangoltan működő getter metódusok: getHTML(), getRegionList(), getRegionData(), getPopulation(). A JSON adatforrás feldolgozását most nem részletezzük, de hasonlóról blogoltunk már: Időjárás Budapesten.

A grafikus felhasználói felületet adja a JFrame utód View osztály. Három GUI komponensből áll: pnWorldMap – háttérkép JPanel, lbYear – kiválasztott/aktuális év JLabel, slYear – kiválasztható/görgethető aktuális év JSlider. Izgalmas megoldani egymásra/egymáson elhelyezni a komponenseket. Egy JLayeredPane komponens  DEFAULT_LAYER rétegére kerül a térképet tartalmazó háttérkép, majd a  PALETTE_LAYER rétegére kerül dinamikusan a hat  RegionLabel osztályú/típusú objektum. A csúszka komponens slYearStateChanged() eseménykezelő metódusa vezérlőként megszólítja a modell réteget és a visszakapott adatokkal frissíti a nézet réteget (a címsorban lévő összesítéssel együtt, ezres szeparátorokkal).

Ötlet továbbfejlesztésre

Hat különböző weboldal forráskódjából kell összegyűjteni a megjelenítendő adatokat. Ez 2020-ban régiónként 71 számot jelent és hat régió van. Érdemes lehet olyan adattárolást megvalósítani, amely csökkenti a szerverhez fordulások számát, illetve a letöltendő adatok mennyiségét. Hiszen a múltbeli évekhez kötődő historikus adatok nem változnak. Ha ezekre valamilyen formában a program emlékszik, akkor elegendő az utolsó tárolt évből kiindulva az aktuális évig évenként, régiónként lekérni mindössze 6, 12, 18… számot, a program utolsó futtatásának évéből kiindulva. Ez lényegesen kevesebb lenne, mint a jelenlegi 6*71 lekért szám. A koncepció kulcsszava: inkrementális adatfrissítés. Ha megvalósítjuk az ötletet, akkor figyelni kell arra, hogy az aktuális/utolsó évben az adatok akár másodpercenként is változhatnak.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik (ha a swing GUI-ra koncentrálunk és az adatok helyi fájlrendszerből elérhetők), és a Java EE szoftverfejlesztő tanfolyam tematikájához kapcsolódik (ha az adatokat közvetlenül a webről olvassuk).

Hóesés szimuláció

Hóesés szimulációt tervezünk és valósítunk meg Java nyelven. A téma igazi örökzöld. Elvileg minden télen aktuális. 😉 A grafikus felülethez és az eseménykezeléshez a swing gyűjteményt használjuk. Adott egy téglalap alakú terület amelyen – méretéhez igazodva – több száz hópehely mocorog. A területet önállóan programoztuk le – azaz ez alkotja a teljes GUI-t –, de lehetne egy nagyobb kép része is. Többféleképpen is beépítünk véletlenszerűséget a szimulációba. Tervezünk is, hiszen az sosem árt. 😉

Többnyire beépített komponenseket, elemeket használunk, de van saját, örökítéssel testre szabott komponensünk is:

  • A szimuláció a Window osztályból példányosított felületen működik, amely JFrame utód. Nem átméretezhető és látható.
  • A területet JPanel típusú pnTransparentWindow alkotja. Mérete 300*200 pixel. Színe a szürke egyik árnyalata. Ezen mozognak a hópelyhek.
  • A hópehely Snowflake típusú JPanel utód. Mérete 2*2 pixel. Színe fehér. Saját swing-es Timer biztosítja az eseménykezelését. A szimulációban 600 hópehely szerepel.

Az elkészült szimuláció

A teljes forráskódból íme a hópehely megvalósítása

A hópehelynek „tudnia kell” hol van, azaz mekkora területen mozoghat, ez a rectangle. A hópehelynek van size mérete. A hópehely saját magát mozgatja a területen a timer segítségével. Az időzítés várakoztatására/késleltetésére vonatkozó delay értéke véletlenszerűen 50, 100, , 250 milliszekundum lehet. Másképpen: a szél által össze-vissza fújt hópelyhek között lehetnek lassabban és gyorsabban mozgók is. Az eseményobjektumhoz lambda kifejezés rendeli hozzá a reakciót jelentő, mozgást megvalósító move() metódus meghívását, amely így adott időközönként bekövetkezik.

A hópelyhet a konstruktora hozza létre. Átveszi azt a pnTransparentWindow területet, amelyre később rákerül a Window példányosítása során. A gyengébb setSize() metódus helyett az erősebb setPreferredSize() metódus állítja be a méretet. Véletlenszerű x és y pozícióba kerül ki/fel a területre. A setBounds() örökölt metódus beállítja a pozícióját és méretét. Erre épít a fogadó oldalon az abszolút helyzet, külön elrendezésmenedzser nélkül. Végül a hópehely átlátszó, fehér és elindítja saját időzítőjét a timer.start() metódushívással.

Az időzítés/várakoztatás véletlenszerűsége után íme a második véletlenszerűség a szimulációban. A hópehely mozgása során a szél által össze-vissza fújva eltérő eséllyel/valószínűséggel mozog 8 lehetséges irányba az alábbiak szerint:

  • 5-5% eséllyel felfelé, azon belül jobbra vagy balra (átlósan),
  • 10-10% eséllyel jobbra vagy balra,
  • 20-20% eséllyel lefelé, azon belül jobbra vagy balra (átlósan),
  • 30% eséllyel lefelé, függőlegesen,
  • felfelé, függőlegesen nem mozog.

Az esélyek összege 100%. Másképpen kulcsszavakban: 1 = biztos esemény (teljes eseménytér, nincs más lehetőség), egymást kizáró események, geometriai valószínűség. A képen középen lévő hópehely a 8 szomszédja közül a 7 szóba jöhető közül valamelyikre adott eséllyel mozog. A geometriai valószínűséget az ábra alapján az óramutató járásával megegyezően leképeztük az 1..100 intervallumra:

A move() metódus megvalósítja a fenti tervnek megfelelően a hópehely mozgatását. Első lépésben tudni kell a jelenlegi/kiinduló location helyét (a bal felső csúcs, elkérjük). Ezután véletlenszerű esély/ tip generálódik. Az első elágazásban a hópehely translate() metódusával eltoljuk az előbb elkért pontot. Az eltolás relatív. Az utolsó elágazásban kompenzálunk, ha a hópehely alul kilépne a területről. Ekkor felül újra belép a területre. Végül beállítjuk a hópelyhet megvalósító komponenst a manipulált location helyre.

Takarékosak vagyunk: ezzel a megoldással „újrahasznosítjuk” a hópelyheket. Csak annyi van belőlük, amennyi szükséges. Nem kell őket folyamatosan megszüntetni és újra létrehozni. Nem mozognak feleslegesen. Nem mozognak olyan területen, ahol nem láthatóak.

Ötletek továbbfejlesztésre

  • A hópelyhek színe lehetne véletlenszerű a fehér és a középszürke között. Ezzel a nézőtől való távolságot, esetleg a kép élességét lehetne modellezni.
  • A szél nem feltétlenül szimmetrikus, vagy a hópelyhek mozgatását meg lehetne oldani jobbra és balra eltérő eséllyel is.
  • A terület lehetne más alakú, például trapéz, íves, kör, ellipszis.
  • Másképpen is vezérelhetnénk a szimulációt. Ahelyett, hogy most minden hópehelynek van saját időzítője, lehetne csak 5 db (lassabbak és gyorsabbak), amelyek közül véletlenszerűen kiválaszthatnánk, hogy melyik hatására mozgatjuk az adott hópelyhet. Fordítva is mehetne: az 5 db időzítőhöz előre hozzárendelhetnénk a hópelyheket. Ez így más-más felelősség, kommunikáció, üzenetküldés, vezérlés lenne az objektumok között. Hasznos tapasztalat lehet megvalósítani bármelyiket.
  • A terület lehetne egy nagyobb kép része. Például meghatározhatnánk egy tetszőleges átlátszóságot (színt vagy arányt) és többrétegű felületet megvalósítani képes JLayeredPane komponens elé vagy mögé is elhelyezhető lehetne a terület a grafikus felületen.
  • Aki kihívást keres: illessze a területet az alábbi hangulatos képre úgy, hogy a középső ablakok téglalap alakúak, a két szélső trapéz alakú vagy perspektivikus nézetű és a kör/ellipszis alakú tükörben pedig tükröződik valahonnan a hóesés látványa.
  • Még bátrabbaknak: a kandallóban lévő tüzet is lehet hasonlóan szimulálni. Itt már többféle fizikai paraméter is figyelembe vehető, például fényerősség, tükröződés. Egy 3D modellezett térben a sugárkövetés (Ray Tracing) algoritmus is megvalósítható. A hópelyheknél lehetne az egyszerű mozgástól eltérő más fizikát is programozni: rugalmas ütközéssel összetapadhatnának vagy rugalmatlan ütközéssel lepattanhatnának egymásról és mindez hathatna a sebességükre is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb szimulációs programot tervezni, kódolni, tesztelni.

Denevérek a barlangban

Évekkel ezelőtt hálózatos Java EE esettanulmányt akartunk készíteni Lengyel Borisz kollégával. Ötleteltünk: milyen technológiával és hogyan kommunikáljon egymással a szerver és a kliens(ek). A távoli metódushívás (Remote Method Invocation) mellett döntöttünk és elkészült a denevérek a barlangban projekt, amely evolúciós projektként azóta több változatot is megélt. A felhasználói felület (barlang) betölt néhány képet (denevér kliensek), amelyek a szerver segítségével mozognak.

Ismertetjük a tervezés folyamatát, a kliens és szerver funkcióit részletesen, végül ötleteket adunk a továbbfejlesztésre.

A főbb feladatokat így határoztuk meg:

  • az RMI kommunikációs módszer megismertetése,
  • az RMI szolgáltatás reprezentálása látványos grafikus/swinges klienssel,
  • alternatíva nyújtása a TCP protokoll közvetlenül csatlakozó socket-jére.

Elkészítettük az alábbi osztálydiagramot (persze ez nem az első változat):

Denevérek a barlangban - Osztálydiagram

A szerver és kliens funkcióit megvalósító osztályok/interfészek feladatait így határoztuk meg:

BarlangDenevérInterfész interfész:

  • véletlen 5 és 10 közötti a denevérek száma,
  • méretek a GUI-hoz.

Denevér osztály:

  • megvalósítja az RMI kliens funkciót,
  • JLabel leszármazott, külső képfájlt tölt be ( bat.jpg),
  • egyedi azonosítója van,
  • eldönti mozgásának irányát (4) és léptékét (3), mintha ultrahangot adna,
  • a szerver megadja neki, hogy az új helyre elmozdulhat-e,
  • saját magát képes mozgatni.

Pozíció interfész:

  • öröklődik a java.rmi.Remote interfészből,
  • két távolról hívható metódus fejét tartalmazza.

BarlangSzerver osztály:

  • megvalósítja az RMI szerver funkciót,
  • implementálja a Pozíció interfészt,
  • JFrame leszármazott,
  • figyel arra, hogy a denevérek ne mozogjanak ki a barlangból.

BarlangFelület osztály:

  • JFrame leszármazott,
  • GUI az RMI kliensek megjelenítéséhez.

BarlangSzerverTérkép osztály:

  • JPanel leszármazott,
  • GUI a szerveren a kliensek mozgásának követésére.

Ha futtatjuk az elkészült szerver és kliens programot, akkor ezt láthatjuk:

Denevérek a barlangban - animáció

A fejlesztés és tesztelés közben sok-sok továbbfejlesztési ötletet/javaslatot fogalmaztunk meg:

  • háttérkép a barlangról,
  • a háttérkép megvalósíthat labirintust, koordináta-rendszert,
  • átlátszó illetve egyedi képfájlok a denevéreknek,
  • a denevérek mozgásának tetszőleges iránya (360°),
  • a denevérek mozgásának egyedi léptéke,
  • a denevérek figyeljenek egymásra (ne ütközzenek össze),
  • a denevérek figyeljenek a környezetükre (ne ütközzenek bele sziklákba, cseppkövekbe),
  • a szerver követheti a denevérek útvonalát,
  • a szerver archiválhat, szerializálhat, készíthet statisztikát.

A bejegyzéshez tartozó – több lépésben továbbfejlesztett – forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java EE szoftverfejlesztő tanfolyam 21-24. óra: RMI alapú kommunikáció alkalmához kapcsolódik.

Koch-görbe rajzolása

Koch-görbe

Koch-görbeA Koch-görbe egyike a legrégebben ismert egyszerű fraktáloknak. Mint ilyen, önhasonlóan rekurzív. Az önhasonlóság azt jelenti, hogy az ábra tetszőleges részét felnagyítva mindig hasonló/ugyanolyan részek jelennek meg (a méretaránytól függetlenül). Az n=1 szinten a Koch-görbe kiindulópontja egy szabályos háromszög. A n+1-edik szinten az n-edik szinten található szakaszokat harmadoljuk, és a középső szakasz helyére egy harmad akkora háromszög két szárát illesztjük (az alapját kihagyjuk). Ezt rekurzívan folytatva kapjuk meg a Koch-görbét, másképpen Koch-féle hópelyhet.

Írtam egy egyszerű Java programot, amely n=1-től 9-ig paraméterezhetően kirajzolja a Koch-görbét egy grafikus felületre. Így működik:

Koch-görbe rajzolását bemutató program működése

A program elkészítéséhez néhány alapvető dolgot kell csupán tudni:

  • Vászontechnikával tudunk swing GUI felületre ( Graphics osztályú g objektum) rajzolni, ahol a koordináta-rendszer origója egy téglalap alakú terület bal felső csúcsa, X jobbra növekszik, Y pedig lefelé növekszik.
  • Kétféle szín áll rendelkezésre: háttérszín (most Color.WHITE), illetve rajzolószín (most Color.BLUE).
  • A rajzoláshoz grafikai primitíveket használhatunk, például pont, szakasz, téglalap, ellipszis. Szakaszt két végpontjának koordinátáival tudunk rajzolni a drawLine() metódussal.
  • Be kell állítani a vászon méreteit, azaz annak a komponensnek ( JPanel-ből öröklött KochPanel osztályú pnKoch objektum) a méreteit, amelyre ráfeszül a vászon.
  • Egy Slider osztályú sSzint nevű vezérlőobjektum ChangeListener figyelőinterfész stateChanged() eseménykezelő metódust implementáló objektumával paraméterezzük a rajzolást 1-től 9-ig.
  • A pnKoch objektumnak küldött repaint() üzenet/metódushívás meghívja a felüldefiniált paintComponent() metódust.

A szakasz négy darab harmad akkora szakaszra osztását a megfelelően paraméterezett rekurzív metódushívások oldják meg az alábbi lépéseket követve:

Koch-görbe rajzolásának fázisai

A rekurzív rajzolást a koch() metódus végzi el, ahol a fraktál szabályának megfelelően szakaszharmadolás és a szükséges pontok koordinátáinak (szakaszok végpontjai) kiszámítása történik:

A Koch-görbének van néhány érdekes tulajdonsága:

  • kerülete minden rekurzív lépésben minden határon túl növekszik, azaz a végtelenhez tart,
  • területe véges, hiszen minden rekurzív lépésben belefér a háromszög köré írható körbe,
  • dimenziója tört, ~ 1,261859.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomra építő 29-36. Grafikus felhasználói felület alkalomhoz kötődik.

Télapó probléma

Télapó-probléma

Télapó-problémaAz operációs rendszerek tervezésének fontos része az ütemezési, erőforrás- és szálkezelési feladatok problémamentes, holtpontmentes megoldása, szinkronizálása, amiről sok ismert szerző publikált már, néhányan közülük angol nyelven: W. Stallings, A. B. Downey, A. S. Tanenbaum, A. S. Woodhull., és magyarul is: Galambos Gábor, Knapp Gábor és Adamis Gusztáv. Ehhez a szakterülethez tartozik több népszerű probléma/esettanulmány, például a vacsorázó bölcsek problémája, illetve a Santa Claus Problem, vagyis a Télapó probléma.

A Télapó probléma specifikációját és megoldását a konkurens programozás eszközeire építve J. A. Trono készítette el (szemaforokkal), amire építve is – és kritizálva is azt – több Java implementáció is elkészült (például: P. Steiner), valamint több programozási nyelv szálkezelési lehetőségeinek összehasonlításáról is publikált J. Hurt és J. B. Pedersen és kliens-szerver elosztott környezetben is áttekintette a lehetőségeket D. Marchant és J. Kerridge. Ismert Haskell, Erlang, Polyphonic C# implementáció is.

A Télapó probléma meghatározása

A Télapó alszik az északi-sarki boltjában és csak akkor ébredhet fel, ha mind a 9 rénszarvas visszatér a dél-csendes-óceáni trópusi szigetén töltött rendes évi nyaralásukról, illetve ha akad néhány manó, akiknek nehézségei vannak az ajándékkészítés során. A 10 manó közül 1 manó problémája nem elég komoly ahhoz, hogy felébressze a Télapót (egyébként sosem aludna), így 3 manó megy egyszerre a Télapóhoz. Amikor a 3 manó problémáit közösen megoldották, akkor mind a 3 manónak vissza kell térnie a többi manóhoz, mielőtt egy újabb manólátogatás megtörténne. Ha a Télapó úgy ébred, hogy 3 manó várja őt a bolt ajtajánál és az utolsó rénszarvas is visszatért a trópusokról, akkor a Télapónak fontosabb, hogy olyan gyorsan elinduljon a szánnal, amilyen gyorsan csak lehetséges – így a manóknak várniuk kell karácsony utánig. Feltételezzük, hogy a rénszarvasok nem akarják elhagyni a trópusokat, ezért az utolsó pillanatig maradnak, amíg csak lehetséges. Lehet, hogy egyáltalán nem is jönnének vissza, ameddig a Télapó fizeti a számlát a paradicsomban… Ez is megmagyarázhatja az ajándékok kiszállításának gyorsaságát, hiszen a rénszarvasok alig várják, hogy visszatérhessenek oda, ahol meleg van. Az utolsóként érkező rénszarvas büntetést kap a Télapótól, mialatt a többi rénszarvas a meleg kunyhóban várja, hogy befogják őket a szán elé.

A Télapó probléma – egyik – megoldása

Találtam egy kb. 10 perces kiváló YouTube videót/animációt (The Santa Claus Problem Thread Synchronization), amely lépésenként felépíti a feladatot, érzékelteti a közben felmerülő problémákat, és megoldást is mutat. Ezt ajánlom december 6-án minden érdeklődő figyelmébe:

Megjegyzés: a videót nem mi készítettük. 2017-től 2020-ig az eredeti linkről ágyaztuk be a blog bejegyzésbe a videót. 2020-ban a videót az eredeti linkről (https://www.youtube.com/watch?v=pqO6tKN2lc4) eltávolították. A blog bejegyzésbe jelenleg beágyazott videó a 2017-es mentett változat.

A feladatot részletekbe menően és komplex módon gondolkodva kell megtervezni, és implementációi komoly nyelvi eszköztárat igényelnek. Érdemes P. Steiner Java megoldását részletesen átnézni, újragondolva – újabb nyelvi eszköztárral – implementálni.

A feladat a Java EE szoftverfejlesztő tanfolyam 1-4. óra: Elosztott alkalmazások, webszolgáltatások, illetve 5-8. óra: Szálkezelés, párhuzamosság alkalmaihoz kapcsolódik.