Egy matematika érettségi feladat megoldása programozással 2019

érettségi logó

érettségi logóA 2019-es középszintű matematika érettségi feladatsor 16. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, szélsőérték-kiválasztás, másolás. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

16. a) feladat

Péter elhatározza, hogy összegyűjt 3,5 millió Ft-ot egy használt elektromos autó vásárlására, mégpedig úgy, hogy havonta egyre több pénzt tesz félre a takarékszámláján. Az első hónapban 50000 Ft-ot tesz félre, majd minden hónapban 1000 Ft-tal többet, mint az azt megelőző hónapban. (A számlán gyűjtött összeg kamatozásával Péter nem számol.) Össze tud-e így gyűjteni Péter 4 év alatt 3,5 millió forintot?

1. megoldás

Az 1. megoldás egyszerűen behelyettesít a számtani sorozat n-edik elemének ( an) és n-edik összegének ( sn) képleteibe. A kérdés (eldöntés): eléri-e az összeg a 3,5 millió Ft-ot? A válasz igen: a 48. iteráció/hónap után 3528000 Ft-ot kapunk.

2. megoldás

A 2. megoldás a sorozatszámítás programozási tételt használja. Minden hónapra (1-től 48-ig) meghatározzuk az aktuális havi összeget ( an) és növeljük vele a gyűjtőt ( sn).

3. megoldás

A 3. megoldás során az első hónapot külön kezeljük és a d differenciát/növekményt is folyamatosan – az előző havi összegből kiindulva – növeljük a ciklusban a 2.-tól a 48. hónapig 1000 Ft-tal.

4. megoldás

A 4. megoldás során megváltozik a kérdés: hányadik hónapban érjük el (vagy haladjuk meg) a 3,5 millió Ft-ot? A válasz: a 48. hónap/iteráció után és 3528000 Ft-ot kapunk.

16. b) feladat

A világon gyártott elektromos autók számának 2012 és 2017 közötti alakulását az alábbi táblázat mutatja.

16_feladat_b_táblázat

Szemléltesse a táblázat adatait oszlopdiagramon!

Ezt most itt nem részletezem, mert hasonló grafikonrajzolásról blogoltunk máshol/máskor lásd:

16. c) feladat

Péter az előző táblázat adatai alapján olyan matematikai modellt alkotott, amely az elektromos autók számát exponenciálisan növekedőnek tekinti. E szerint, ha a 2012 óta eltelt évek száma x, akkor az elektromos autók számát (millió darabra) megközelítőleg az f(x)=0,122*20,822x összefüggés adja meg. A modell alapján számolva melyik évben érheti el az elektromos autók száma a 25 millió darabot?

1. megoldás

Egyszerű átrendezést és behelyettesítést követően az  x: 9.341731310065603 eredményt kapjuk. Ebből következtethető, hogy 2012 után a 10. évben (azaz 2022-ben) érheti el az elektromos autók száma a 25 millió darabot.

2. megoldás

A függvény behelyettesítését tizedenként közelítve végzi a ciklus, amíg el nem éri a 25-öt. Az utolsó eredményből ( x: 9,40, f: 25,84) ugyanaz következtethető, mint az 1. megoldásnál.

16. d) feladat

Egy elektromos autókat gyártó cég öt különböző típusú autót gyárt. A készülő reklámfüzet fedőlapjára az ötféle típus közül egy vagy több (akár mind az öt) autótípus képét szeretné elhelyezni a grafikus. Hány lehetőség közül választhat a tervezés során? (Két lehetőség különböző, ha az egyikben szerepel olyan autótípus, amely a másikban nem.)

A metódust futtatva az alábbi eredményt kapjuk. 31-féle különböző reklámfüzet fedőlap készíthető:

A megoldást valósnak tekinthető adatokkal konkretizáltam. Az autók nevét ötelemű tömb ( autoTomb) tárolja. A számok 1-től 31-ig (tízes számrendszerben) öt biten 00001-től 11111-ig ábrázolhatók (vezető nullákkal) kettes számrendszerben. A bináris alakban előforduló 1-es bit jelöli a kiválasztott autó nevének  autoTomb.length-1-j képlettel korrigált indexét (0-tól 4-ig) a tömbben.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, valamint 21-24. óra: Objektumorientált programozás, 2. rész alkalmaihoz kötődik.

Barátságos számok

Barátságos számok

Barátságos számokAzokat a számpárokat, amelyekre igaz, hogy az egyik szám önmagánál kisebb osztóinak összege megegyezik a másik számmal és fordítva, külön-külön barátságos számoknak, együtt barátságos számpárnak hívjuk.

Másképpen: legyen d(n) az n természetes szám önmagánál kisebb osztóinak összege. Ha d(a)=b és d(b)=a, ahol ab, akkor a és b barátságos számpár.

Például: (220; 284), hiszen a 220 önmagánál kisebb osztói: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 és ezek összege 284, illetve 284 önmagánál kisebb osztói: 1, 2, 4, 71, 142 és ezek összege 220.

Írjunk Java programot, amely kiírja az 1-10000 zárt intervallumban található barátságos számpárokat!

1. megoldás

A baratsagosSzamparok1() eljárás ciklusai a brute force módszer szerint behelyesítik az összes lehetséges számot. Minimális lépésszám csökkentésre adódik lehetőség, hiszen a belső ciklus j változója i+1-ről indítható (így a megtalált számpárok nem íródnak ki fordítva is, mert teljesül, hogy i<j).

Az osztokOsszege1(n) függvény is minden lehetséges osztót figyelembe vesz 1-től n-1-ig.

2. megoldás

Kisebb módosításokkal a lépésszám csökkenthető. A baratsagosSzamparok2() eljárás külső ciklusánál figyelembe vettem, hogy a legkisebb barátságos számpár kisebb tagja nagyobb 200-nál. Mivel a barátságos számpárok tagjainak paritása mindig megegyezik (azaz mindkettő páros vagy mindkettő páratlan), így a belső ciklus j változója indítható i+2-ről és léptethető kettesével ( j+=2), és továbbra is teljesül, hogy i<j.

Az osztokOsszege2(n) függvényt is módosítottam. Mivel az 1 minden számnak osztója, illetve a 2 minden páros számnak osztója, így s lehet 3 vagy 1 és a ciklus indítható 3-ról. A páros számok esetén a számnál kisebb legnagyobb osztó maximum n/2 lehet, illetve ugyanez páratlan számok esetén n/3 lehet. Ezekre figyelve a max változó adja a ciklus léptetésének felső határát. Az i változó léptetésénél figyelembe vettem, hogy páratlan számnak csak páratlan osztói lehetnek ( i=3-mal szinkronban).

3. megoldás

Az eddigi két egymásba ágyazott ciklus helyett átszervezhető a baratsagosSzamparok3() eljárás. A j>i && osztokOsszege2(j)==i feltétel kiértékelése így sokkal hatékonyabb.

Vajon milyen nagyságrendű különbségek adódnak, ha összehasonlítjuk a három megoldás futási idejét?

Az 1. megoldás futási ideje 1104156 ms, a 2. megoldásé 257055 ms, a 3. megoldásé 121 ms. A konkrét értékek helyett a nagyságrendet megfigyelve a különbség nagyon látványos.

Mindhárom megoldás helyes és megkapjuk az intervallumban található öt barátságos számpárt: (220; 284), (1184; 1210), (2620; 2924), (5020; 5564), (6232; 6368).

A bejegyzéshez tartozó teljes – időméréssel kiegészített – forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Források:

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomhoz kötődik.

Egy matematika érettségi feladat megoldása programozással 2018

érettségi logó

érettségi logóA 2018-as középszintű matematika érettségi feladatsor 10. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, kiválasztás. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

10. feladat

Adja meg az alábbi adathalmaz móduszát, mediánját és terjedelmét!
2; 6; 6; 6; 6; 6; 3; 3; 4; 4; 4; 5; 5; 5; 5

Tervezés

A Java 8 által biztosított újdonságok közül használunk néhányat. Célszerű konstans tömbben tárolni a megadott számsorozatot, ami könnyen konvertálható generikus listába. Alkalmazkodni kell ahhoz, hogy a lista indexelése 0-tól lista.size()-1 -ig értelmezhető. Hasznos, ha a konkrét feladatok helyett általános megoldásokban gondolkodunk és a feladatot 3 metódusra bontjuk, amelyek ellenőrzéseket is végeznek. Például extrém esetek:

  • ha a lista üres, akkor nincs módusz, medián, terjedelem,
  • ha a lista egyetlen elemből áll, akkor a módusz és a medián megegyezik az elemmel, a terjedelem pedig nulla,
  • ha leggyakrabban több különböző szám is előfordul, akkor a módusz ezek közül a (leg)kisebb számot adja vissza.

Elvárjuk, hogy probléma esetén a metódusok dobjanak kivételt. Lényeges, hogy a referencia szerinti paraméterátadás során megváltozna a listában az elemek sorrendje, mert a megoldás igényli az elemek rendezettségét, akkor készüljön másolat az adatszerkezetről, hogy egy-egy részfeladat megoldása nem járjon azzal a mellékhatással, hogy az eredeti adatszerkezetben megváltozik az elemek sorrendje. Felhasználjuk a primitív típusú változók és a csomagolóosztályok közötti konverziós lehetőségeket: autoboxing és unboxing.

Megoldás: módusz

A módusz a lista leggyakoribb értékét adja meg. Másképpen az az érték, amelyik az adatsorban a legtöbbször előfordul.

A modusz() metódus átveszi a szamLista-t és készít róla lista néven egy másolatot, majd utóbbit növekvő sorrendbe rendezi. A másolat a Stream API-val készül el. Ezután csoportváltás algoritmussal feldolgozza a listát. Egy csoportba az azonos számok kerülnek és léptetés közben a belső ciklus megszámolja, hogy hány azonos szám alkotja az aktuális csoportot. Végül összehasonlítás következik a szélsőérték-kiválasztás ( aktSzamDb>maxAktSzamDb) beépítésével.

Megoldás: medián

A medián a lista középső értéke, amelynél az ennél kisebb és nagyobb elemek száma azonos. Rendezett adatsornál páratlan elemszám esetén a középső elem, illetve páros elemszám esetén a két középső elem átlaga.

A median() metódus átveszi a szamLista-t és készít róla lista néven egy másolatot, majd utóbbit növekvő sorrendbe rendezi. Ezután páros elemszám esetén visszaadja a két középső elem átlagát, illetve páratlan elemszám esetén a középső elemet. A metódusnak valós értéket ( double) kell visszaadnia, mert a két középső elem átlaga nem feltétlenül egész szám.

Megoldás: terjedelem

A terjedelem azt mutatja meg, hogy mekkora értékközben ingadoznak a lista elemei. A terjedelem az adatok változékonyságának „legdurvább” jellemzője, ami a szélsőértékek (minimum és maximum) közötti különbséget jelenti.

A terjedelem()  metódus átveszi a szamLista-t paraméterként és visszaadja a két szélsőérték különbségét, amelyek a Collections  osztály metódusaival könnyen előállítható. Persze egyetlen ciklussal is megkaphatnánk a két szélsőértéket.

Eredmény

A vezérlést az alábbi main()  metódus végzi el:

A konzolon az alábbi eredményt kapjuk:

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra: Objektumorientált programozás alkalmaihoz kötődik.

Nemzetközi Pi nap

A Pi-t (π) mindenki ismeri. Talán sokaknak kedvenc története is van a π-vel kapcsolatosan, amelyet iskolában vagy utazásai alatt szerzett. A π Euklidesz geometriájában a kör kerületének és átmérőjének arányát jelöli. A π irracionális szám, azaz végtelen, nem szakaszos tizedestört; másképpen számjegyei között nincs ismétlődés. A π értékével a hétköznapokban 3,14-dal szokás számolni, de a tudomány területén ennél sokkal pontosabb közelítést szokás alkalmazni. A π közelítése az informatikának köszönhetően akár több millió tizedesjegyig is lehetséges (például: S. Memphill: Pi to 1,000,000 places).

A nemzetközi Pi nap alkalmából (március 14) megvalósítottunk néhány – végtelen összeggel és szorzattal – π közelítésre való képletet, algoritmust Java nyelven.

1. Viète-féle sor

Pi-kozelites-Viete

A módszer néhány eredménye: i=5 esetén 3.140331156954752 (2 tizedesjegyre pontos), i=10-nél 3.1415914215112 (5 tizedesjegyre pontos), i=11 esetén 3.1415923455701176 (6 tizedesjegyre pontos).

2. Leibniz-féle sor

Pi-kozelites-Leibniz

A módszer néhány eredménye: a 24. lépéstől stabil 1 tizedesjegyre, a 626. lépéstől stabil 2. tizedesjegyre, a 2453. lépéstől stabil 3 tizedesjegyre (hiszen alternál).

3. Wallis-formula

Pi-kozelites-Wallis

A módszer néhány eredménye: A 38. lépéstől 1, a 986. lépéstől 2, a 2650. lépéstől 3, a 16954. lépéstől már 4 tizedesjegyre pontos.

4. Csebisev-sor

Pi-kozelites-Csebisev

A módszer k=10-re már 8 tizedesjegyig pontos.

A bejegyzéshez tartozó teljes forráskódot – további 8 közelítő módszer implementációjával együtt – ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek alkalmához kötődik.

Péntek 13

Péntek 13

Péntek 13Sokan szerencsés vagy balszerencsés napnak tartják a péntek tizenharmadikát. Évente 1-2-3 alkalommal megtörténik, hogy a hónap 13. napja péntekre esik (minden vasárnap kezdődő hónapban). A hónap 13. napja valamivel valószínűbben péntekre esik, mint a hét bármely más napja. Átlagosan 212,35 naponként fordul elő péntek 13. Előfordulhat két egymást követő hónapban is, de akár 14 hónap is eltelhet két péntek 13 között.

A nap említése sok helyen előfordult: regényekben, filmekben, híres emberek születése vagy halála is esett péntek 13-ra. Átlag alatti közlekedési baleset szokott előfordulni ezeken a napokon – talán mert az emberek óvatosabbak. Kimutatható összefüggést/korrelációt, „péntek 13 hatást” figyeltek meg a tőzsdén is.

Hasznos lehet, ha írunk egy Java programot, amely néhány egymást követő év esetén listázza a konzolra azokat a hónapokat, amikor 13-a péntekre esik.

Tervezés

Legyen egy listFriday13(year) eljárás, amely a paraméterként átvett évben kiírja azokat a hónapokat a konzolra, amelyekben 13-a péntekre esett/esik. Például: 2017: január, október. A hónapok nevei magyar nyelven jelenjenek meg. Az adott év hónapjain végighaladó ciklus legyen hatékony. Optimalizáljunk a ciklus lépésszámára! A ciklus álljon le, ha már talált 3 hónapot (mivel nem lehet több).

1. megoldás

A megoldást a tematika Tömbök témakörében az alábbiak szerint készíthetjük el. Előismeretek: változók, operátorok, ciklusok, programozási tételek, metódusok, tömbök, String összehasonlítás. Az ismert öröknaptár algoritmusokból implementáljuk az egyiket, például:

A listFriday13v1(year) eljárásban az elemi döntés egyszerű: dayOfWeek(year, month, 13).equals("Friday"). Épít az öröknaptárt megvalósító – saját – szöveget visszaadó függvényre. A függvény az algoritmus szerinti kódok előállításához ( centuryCode, monthCode, dayCode) felhasználja a szökőév ( isLeapYear(year)) függvényt, valamint két – konstansnak is tekinthető – névtelen tömböt ( new int[], new String[]).

2. megoldás

A megoldást a tematika Objektumorientált programozás témakörében az alábbiak szerint készíthetjük el. Felhasználjuk eddigi ismereteinket és a JDK beépített dátumkezelő (tároló, formázó) funkcióit (osztályok, interfészek, konstansok, felsorolások).

A listFriday13v2(year) eljárás a Calendar absztrakt osztály konstansait használja fel az elemi döntéshez: date.get(Calendar.DAY_OF_WEEK)==Calendar.FRIDAY. A dátumot a GregorianCalendar konstruktora példányosítja és figyelni kell a 0-bázisú hónapkezelésre. A dátum formázása során ( dfMonth) beállítjuk a megfelelően paraméterezett ( "hu") Locale típusú objektumot és a hónap hosszú nevét kérjük ( "MMMM"). A metódus generikus listába gyűjti a kiválasztott hónapok nevét, amiket végül a String.join() függvény fűz össze a megjelenítéshez.

Eredmény

A vezérlésben egy ciklus 2017-től 2036-ig szervezve az alábbi eredményt adja:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik a fentiek szerint: 13-16. óra: Tömbök alkalom, illetve 17-28. óra: Objektumorientált programozás alkalom.

Aki gyakorolna a témához kötődően: írjon olyan Java programot, ami listázza a konzolra a 21. század éveit olyan hónapokba csoportosítva, amikor 13-a péntekre esik. Egy év többször is előfordulhat. Például: január – 2006, 2012, 2017, 2023, 2034, 2040, 2045, 2051, 2062, 2068, 2073, 2079, 2090, 2096. A megoldásokat hallgatóinktól az ILIAS-ra, érdeklődőinktől hozzászólásban várjuk.