Céline Dion – Courage World Tour

Céline Dion Courage World Tour

Céline Dion Courage World TourA Céline Dion – Courage World Tour esettanulmányunkban a turné első részének koncerthelyszíneit jelenítjük meg Google Charts segítségével. Ebben a blog bejegyzésben a tervezés, megvalósítás lépéseit tekintjük át és megmutatjuk az eredményeket. A Java és JavaScript forráskódokat most nem részletezzük.

Háromféle grafikont használunk

  • idővonal (Timeline) időpontok és helyszínek Gantt diagram-szerűen,
  • térkép (Geo Chart) városok megjelölésével és időpontok jelmagyarázatban,
  • tematikus térkép az USA államaival (szintén Geo Chart), az állam területén adott koncertek száma alapján és db jelmagyarázatban.

A tervezés és megvalósítás lépései

  1. Adatokat kell szerezni egy weboldal (https://www.celinedion.com/in-concert) feldolgozásával ( saveHTML()). Ehhez a művelet a GET. Figyelni kell a megfelelő User-Agent paraméterezésére és a karakterkódolásra ( ISO-8859-1). A kapott bemeneti folyam feldolgozását pufferelt módon érdemes elvégezni. Célszerű az adatforgalom minimalizásása érdekében a weboldal tartalmát helyi fájlba menteni ( tour.html). Ügyelni kell a kötelező és az ajánlott kivételkezelésre.
  2. Értelmezni kell a tour.html fájlt. A HTML tartalom végén JSON formátumban beágyazva elérhetők a koncert turné állomásainak adatai: nekünk kell a város ( city), helyszín ( venue), dátum/idő ( startDate). Érdemes külön fájlba menteni a tour.html-ből a JSON tartalmat ( tour.json), mert abból egyszerűen betölthető ( saveJSON()).
  3. Tanulmányozni kell a Google Charts diagramok közül azt a kettőt, amiket testre kell szabni: Timeline és Geo Chart. Tudni kell: mi a diagramot tartalmazó weboldal állandónak tekinthető eleje és vége (ezeket hasznos külön interfészben konstansként tárolni: HTMLFileContent), valamint mi az adatoktól függő része (közepe). Ismerni kell a szükséges metaadatok és adatok formátumát. Érdemes átnézni a különböző testre szabási és formázási lehetőségeket a fenti diagramtípusoknál (esetleg a többi típusból is meríthetünk ötleteket).
  4. A koncert turné állomásainak összetartozó 3 adatát le kell képezni POJO-vá ( Event). Ezt érdemes privát változókkal ( city, venue, startDate) és factory metódussal megvalósítani. Célszerű, ha az adatok visszakérésére alkalmas getter metódusok is készülnek ( getTimelineChartDataTableRow(), getGeoChartDataTableRow()), amelyek kiszolgálják a megfelelő diagramtípus igényeit.
  5. A tour.json fájl feldolgozásával (parszolásával) Event típusú generikus listába vagy JSON tömbbe könnyen leképezhetők az adatok.
  6. Hasznos egy vezérlőosztály létrehozása, amely a 3 diagramtípust előállító (HTML fájlt generáló) metódust ( createTimelineChart(), createGeoChartCity(), createGeoChartCountry()) valamint a belépési pontot ( main()) tartalmazza.
  7. Generálható az idővonalat tartalmazó timelineChart.html fájl a createTimelineChart()metódussal. Ehhez 5 oszlop megadása szükséges (ebben a sorrendben): label, city, tooltip, start, end. Az első 3 adat string, az utolsó 2 adat date típusú. Egy példa Event: ['2019.09.18.', 'Québec, QC', 'Videotron Centre', new Date(2019, 09, 18, 19, 0, 0), new Date(2019, 09, 18, 21, 0, 0)].
  8. Regisztrálni kell egy Google Cloud Platform felhasználói fiókot és tanulmányozni kell a geokódolás folyamatát és lehetőségeit, hiszen a városok nevéből (formátum pl.: 'Minneapolis, MN') szükség lesz azok térképi koordinátáira. Aktiválni kell a szolgáltatás használatához szükséges mapsApiKey-t.
  9. Generálható a városokat tartalmazó geoChartCity.html fájl a createGeoChartCity() metódussal. Ehhez 3 oszlop megadása szükséges (ebben a sorrendben): city, dateCity, no . Egy példa Event: ['Minneapolis, MN', '2019.11.01. Minneapolis, MN', 1].
  10. Generálható a régiókat/államokat tartalmazó geoChartCountry.html fájl a createGeoChartCountry() metódussal. Ez egy tematikus térkép: a különböző színek jelölik az egy régió/állam városaiban tartott koncertek számát. Ehhez az adatok megfelelő rendezését követően végrehajtott csoportváltás algoritmus szükséges. 2 oszlop megadása szükséges: country, concertNo. Egy példa adatsor: ['US-TX', 3].

Az eredmények

TimelineChart grafikon:

GeoChartCity grafikon:

GeoChartCountry grafikon:

Érdemes megismerni további – térképekhez kapcsolódó – grafikontípusokat is: Geomap, Intensity Map.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A példák a Java SE szoftverfejlesztő tanfolyam 37-44. óra: Fájlkezelés és a Java EE szoftverfejlesztő tanfolyam 1-4. óra: Elosztott alkalmazások, webszolgáltatások és 13-16. óra: JSON feldolgozás alkalmaihoz kötődnek.

Hello World! másképpen

Hello World! - Piet programozási nyelven

Hello World! - Piet programozási nyelvenA programozási nyelvek tanulásának első lépése a „Hello World!” szintaktikájának megismerése, és egyben teszt arra is, hogy megfelelő-e a fejlesztői környezet telepítése, konfigurálása. Megjelenik-e a „Hello World!” a konzolon, felbukkanó ablakban, önálló ablakban, weblapon, üzenetben? Mit kell ezért tenni? Néhány Java példát nézünk erre.

1. Konzolos megoldás

Ez a kiinduló állapot. Futtatva a programot, a konzolon jelenik meg a szöveg.

2. Swing 1. megoldás

Itt felbukkanó párbeszédablakban jelenik meg a szöveg. A JOptionPane ablaka itt önálló, így nincs olyan szülője/tulajdonosa ( null), ahonnan elveheti a fókuszt.

3. Swing 2. megoldás

Itt egy testre szabott JFrame utód készül, alapvető beállításokkal. Az ablak címsorában jelenik meg a szöveg. Az ablak saját magát példányosítja és főablakként viselkedik, vagyis gondoskodik saját maga láthatóságáról, fókusz- és eseménykezeléséről (utóbbi 2 most nincs).

4. JavaFX megoldás

Itt egy testre szabott  Application utód készül, minimál beállításokkal. Az ablak címsorában jelenik meg a szöveg. Az ablak saját magát példányosítja és főablakként viselkedik.

5. Applet megoldás

Böngészőben fut a testre szabott JApplet utód. A weblapon elfoglalt téglalap alakú területen vízszintesen balra és függőlegesen középen jelenik meg a címke komponensben a szöveg.

6. JSP 1. megoldás

Ez egy JSP weboldal automatikusan generált forráskódja. Böngészőben jelenik meg a szöveg.

7. JSP 2. megoldás

Ez egy JSP weboldal egyszerű direktívával a h1 címsorban.

8. Servlet megoldás

Itt egy szervlet által generált weboldal, amely fixen tartalmazza a szöveget.

9. Atipikus 1. megoldás

„Adatbázisból is lekérdezhető” a szöveg.

10. Atipikus 2. megoldás

Ebben az esetben a Java nyelv által biztosított véletlenszám generáló osztályra támaszkodva állítjuk elő a szöveget. Mivel a random objektum által előállított számok csupán a véletlenség látszatát keltik, de valójában egy algoritmus szerint készülnek, ezért előre teljes pontossággal megjósolható a kimenet. Csupán meg kell találni azt a kezdőértéket, ami után „véletlenül” pont a h, e, l, l, o betűk fognak következni. Megismételve a folyamatot egy másik kezdőértékkel, megkapjuk a w, o, r, l, d  betűket is.

A bejegyzéshez tartozó teljes forráskódot – több projektben – ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A példák a Java SE szoftverfejlesztő tanfolyam, a Java EE szoftverfejlesztő tanfolyam és a Java adatbázis-kezelő tanfolyam több alkalmához is kötődnek (kivéve 4. és 5.).

Hivatkozások a témakörben, amelyek más programozási nyelvek példáit is tartalmazzák:

Grafikont készítünk

grafikon

grafikonXML formátumban megkapott adatokat grafikonon jelenítünk meg. 5 összetartozó adat/tulajdonság sorozatát dolgozzuk fel: JOB_TITLE, EMPLOYEE_COUNT, MIN_SALARY, AVG_SALARY, MAX_SALARY. Az adatforrásban egyszerű életpálya modell szerint munkakörönként meghatározott az adható minimális és maximális fizetés (ez a 3 adat közvetlenül rendelkezésre áll). Minden alkalmazottra teljesül, hogy a fizetése beletartozik ebbe a zárt intervallumba. Az adatforrás feldolgozása során COUNT és AVG aggregáló függvényekkel előállítjuk – munkakörönként csoportosítva – az alkalmazottak létszámát és átlagfizetését (ez a további 2 adat). Az Oracle HR sémából lekérdezve 19 munkakört kapunk, így az XML fába is ennyi <JOB_STAT> csomópont kerül. A megfelelő pillanatban rendelkezésre álló 5 összetartozó adat exportálható XML formátumba az alábbiak szerint:

Az elkészült grafikon így jelenik meg:

JFreeChart-grafikon

A JFreeChart típusú grafikont az alábbi forráskóddal készítettük el:

A grafikon rendelkezik vizuális komponens mögötti adatmodellel, hiszen MVC szerkezetű komponens. Ez egy CategoryDataset típusú objektum. Ennek factory metódusa három paramétert vár: a jelmagyarázatot (rowKeys – legends), az Y tengelyen megjelenő feliratokat (columnKeys – jobTitleCountEmployees) és az adatokat (data – datas). Az első 3 elemű String[]: "Maximum fizetés", "Átlagfizetés", "Minimum fizetés". A második 19 elemű szöveges tömb: "Accountant (5 fő)", "Accounting Manager (1 fő)", …, "Stock Manager (5 fő)". A harmadik 3*19-es méretű kétdimenziós double típusú tömb, a megjelenítendő értékekkel: {{9000, 7920, 4200}, {16000, 12000, 8200}, , {8500, 7280, 5500}}.

A szükséges adatok megadását követően meg kell adni a grafikon megjelenítését meghatározó adatokat. Ezt egy CategoryPlot típusú objektum teszi lehetővé, amely konstruktora négy paramétert vár. Az első az adatforrás ( cd), a második az Y tengely felirata ( "Munkakör és létszám"), a harmadik az X tengely – alapértelmezetten felül megjelenő – felirata ( "Fizetés"), a negyedik a diagramtípushoz tartozó megjelenítő funkcióra utaló interfész képességeivel rendelkező névtelen objektum. Ez a 3D oszlopdiagram fekvő és egymást részben átfedő/eltakaró oszlopokkal jelenik meg.

Végül az elkészült ChartPanel típusú objektumra helyezett JFreeChart típusú diagramot hozzá kell adni a JFrame típusú GUI tartalompaneljének egy BorderLayout elrendezésmenedzserű paneljéhez.

Az elkészült grafikon többféle szakterületen is hasznos lehet. Értelmezése során összefüggéseket fogalmazhatunk meg és következtethetünk is.

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat adatfeldolgozó része a Java EE szoftverfejlesztő tanfolyam 9-12. óra: XML feldolgozás, a grafikont megjelenítő része a Java SE szoftverfejlesztő tanfolyam 29-36. óra: Grafikus felhasználói felület alkalmához kapcsolódik.

Télapó probléma

Télapó-probléma

Télapó-problémaAz operációs rendszerek tervezésének fontos része az ütemezési, erőforrás- és szálkezelési feladatok problémamentes, holtpontmentes megoldása, szinkronizálása, amiről sok ismert szerző publikált már, néhányan közülük angol nyelven: W. Stallings, A. B. Downey, A. S. Tanenbaum, A. S. Woodhull., és magyarul is: Galambos Gábor, Knapp Gábor és Adamis Gusztáv. Ehhez a szakterülethez tartozik több népszerű probléma/esettanulmány, például a vacsorázó bölcsek problémája, illetve a Santa Claus Problem, vagyis a Télapó probléma.

A Télapó probléma specifikációját és megoldását a konkurens programozás eszközeire építve J. A. Trono készítette el (szemaforokkal), amire építve is – és kritizálva is azt – több Java implementáció is elkészült (például: P. Steiner), valamint több programozási nyelv szálkezelési lehetőségeinek összehasonlításáról is publikált J. Hurt és J. B. Pedersen és kliens-szerver elosztott környezetben is áttekintette a lehetőségeket D. Marchant és J. Kerridge. Ismert Haskell, Erlang, Polyphonic C# implementáció is.

A Télapó probléma meghatározása

A Télapó alszik az északi-sarki boltjában és csak akkor ébredhet fel, ha mind a 9 rénszarvas visszatér a dél-csendes-óceáni trópusi szigetén töltött rendes évi nyaralásukról, illetve ha akad néhány manó, akiknek nehézségei vannak az ajándékkészítés során. A 10 manó közül 1 manó problémája nem elég komoly ahhoz, hogy felébressze a Télapót (egyébként sosem aludna), így 3 manó megy egyszerre a Télapóhoz. Amikor a 3 manó problémáit közösen megoldották, akkor mind a 3 manónak vissza kell térnie a többi manóhoz, mielőtt egy újabb manólátogatás megtörténne. Ha a Télapó úgy ébred, hogy 3 manó várja őt a bolt ajtajánál és az utolsó rénszarvas is visszatért a trópusokról, akkor a Télapónak fontosabb, hogy olyan gyorsan elinduljon a szánnal, amilyen gyorsan csak lehetséges – így a manóknak várniuk kell karácsony utánig. Feltételezzük, hogy a rénszarvasok nem akarják elhagyni a trópusokat, ezért az utolsó pillanatig maradnak, amíg csak lehetséges. Lehet, hogy egyáltalán nem is jönnének vissza, ameddig a Télapó fizeti a számlát a paradicsomban… Ez is megmagyarázhatja az ajándékok kiszállításának gyorsaságát, hiszen a rénszarvasok alig várják, hogy visszatérhessenek oda, ahol meleg van. Az utolsóként érkező rénszarvas büntetést kap a Télapótól, mialatt a többi rénszarvas a meleg kunyhóban várja, hogy befogják őket a szán elé.

A Télapó probléma – egyik – megoldása

Találtam egy kb. 10 perces kiváló YouTube videót/animációt (The Santa Claus Problem – Thread Synchronization), amely lépésenként felépíti a feladatot, érzékelteti a közben felmerülő problémákat, és megoldást is mutat. Ezt ajánlom december 6-án minden érdeklődő figyelmébe:

A feladatot részletekbe menően és komplex módon gondolkodva kell megtervezni, és implementációi komoly nyelvi eszköztárat igényelnek. Érdemes P. Steiner Java megoldását részletesen átnézni, újragondolva – újabb nyelvi eszköztárral – implementálni.

A feladat a Java EE szoftverfejlesztő tanfolyam 1-4. óra: Elosztott alkalmazások, webszolgáltatások, illetve 5-8. óra: Szálkezelés, párhuzamosság alkalmaihoz kapcsolódik.

Fát építünk

Fát építünk

Fát építünkAz adatok strukturális és könnyen értelmezhető formában való megjelenítése egy szoftver felhasználói felületén átgondolt tervezést igényel. Az adatokhoz hozzá kell jutni, ki kell választani a megfelelő grafikus komponenst, a mögötte lévő adatmodellt, össze kell ezeket kötni. Gyakran előforduló feladat, hogy táblázatosan is ábrázolható adatokból – felhasználva az adatok közötti összefüggéseket és kapcsolatokat – csoportosítva jelenítsünk meg hierarchikusan, fa struktúrában, kinyitható-becsukható formában, ahogyan ezt a felhasználók jól ismerik a fájl- és menürendszereket használva.

Fát építünk kétféleképpen

Adatbázisból, az Oracle HR sémából lekérdezünk két összetartozó nevet: részleg és alkalmazott. A lekérdezés során figyelünk a megfelelő sorrendre, ami a későbbi feldolgozást megkönnyíti. Adatainkat részlegnév szerint növekvő, azon belül alkalmazott neve szerint is növekvő – ábécé szerinti – sorrendbe rendezzük. A vezérlő rétegben két függvényt írunk, amely a modell rétegtől jut hozzá az adatokat tartalmazó generikus listához – átvett paraméterként –, és a visszaadott érték a nézet réteghez kerül.

A csoportváltás algoritmust használjuk, amely 5 blokkból épül fel. A külső ciklus előtti 1. blokk és utáni 5. blokk egyszer hajtódik végre, az előkészítő és lezáró tevékenységek tartoznak ide. A külső ciklus elején és végén található 2. és 4. blokk a belső cikluson kívül fut le, csoportonként, kategóriánként, részlegenként egyszer (most összesen 11-szer mindkettő). A 3. blokk a belső cikluson belül található, és alkalmazottanként egyszer hajtódik végre (most összesen 106-szor).

Háromszintű fát építünk: a gyökérbe (0. szint) fix, beégetett szövegként kerül a cég neve és a teljes létszám. Az 1. szinten jelennek meg a részlegek nevei és a hozzájuk tartozó létszámok. A 2. szint az alkalmazottak neveiből áll.

1. megoldás

A megoldás faKeszit1() függvénye szöveges adatot eredményez. Ez jól használható teszteléshez: megvan-e az összes adat, megfelelő-e a részlegek sorrendje azon belül az alkalmazottak sorrendje, működik-e a csoportosítás, rendben van-e a megszámolás?

A faKeszit1() függvény egy sok lépésben összefűzött (konkatenált) szöveget ad vissza. Az 1. blokkban előkészítjük a fa gyökerét, ami StringBuilder típusú, hiszen sokszor manipuláljuk és inicializáljuk a lista indexelésére használt i ciklusváltozót. A 2. blokkban megjegyezzük az aktuális részleget és előkészítjük az ehhez tartozó alkalmazottak nevét tároló generikus listát ( faReszlegAlkalmazott). Az aktReszleg-hez tartozó alkalmazottak neveit összegyűjtjük a 3. blokkban. Egy részleg feldolgozását a 4. blokkban fejezzük be a fa aktuális 1. és 2. szinten lévő elemeinek szövegbe való beszúrásával. A belső ciklushoz kötődően megszámolást nem kell alkalmaznunk, hiszen az adott részlegben dolgozó alkalmazottak száma a generikus listától elkérhető ( size()). Építünk arra, hogy a külső ciklusból nézve az egymás után végrehajtódó 2. és 4. blokkban az aktReszleg nem változik meg. A 2. blokkban még nem tudjuk a fa aktuális 1. szintjét hozzáfűzni a szöveghez, hiszen a létszám csak a belső ciklusban felépülő kollekciótól kérhető el utólag. Szükséges némi késleltetés, hiszen a szöveg összefűzése és lényegesen egyszerűbb (mint utólag manipulálni megfelelő helyeken). Az 5. blokkban a csoportváltás algoritmushoz kötődő tevékenységünk nincs.

Az 1. megoldás eredménye

2. megoldás

A faKeszit2() függvénynél alkalmazkodunk ahhoz, hogy a JTree vizuális komponenshez DefaultTreeModel observable típusú modell szükséges, így ezzel térünk vissza ( faModell). A fa csomópontjai DefaultMutableTreeNode osztályú objektumok lesznek, amelyeknek a userObject tulajdonsága szükség esetén manipulálható. Az 1 blokkban beszúrjuk a fa gyökerét ( faGyoker), amihez a későbbiekben csatlakozik a fa többi eleme. A 2. blokkban megjegyezzük az aktuális részleget és előkészítjük – megjelenítendő szöveg nélkül – a faReszleg csomópontot. A 3. blokkban fabeli csomópontként a fa 1. szintjén megjelenő részleghez névtelenül hozzáadjuk a fa 2. szintjére kerülő – aktuális részleghez tartozó – alkalmazottak nevét. A 4. blokkban utólag módosítjuk a faReszleg csomópont megjelenítendő szövegét. Az aktuális részleg létszámát itt sem kell külön megszámolni, mert a faReszleg-től elkérhető ( getChildCount()). Az 5. blokkban itt sincs különösebb teendőnk. 

A 2. megoldás eredménye

Fát építünk, képernyőkép

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Attól függően, hogyan jutunk hozzá a megjelenítéshez szükséges adatokhoz, több tanfolyamunkhoz is kapcsolódik a feladat és a modell rétegben mindig másképpen tervezünk és implementálunk:

  • A Java SE szoftverfejlesztő tanfolyam 45-48. óra: Adatbázis-kezelés JDBC alapon, 1. rész alkalmán hagyományos SQL lekérdező utasítást készítünk JDBC környezetben.
  • A Java EE szoftverfejlesztő tanfolyam 25-32. óra: Adatbázis-kezelés JPA alapon alkalommal a perzisztencia szolgáltatásait vetjük be.
  • A Java adatbázis-kezelő tanfolyam 13-16. óra: Konzolos kliensalkalmazás fejlesztése JDBC alapon, 1. rész, 33-36. óra: Grafikus kliensalkalmazás fejlesztése JDBC alapon, 2. rész alkalmain hierarchikus lekérdezéseket használunk.