Kutatók éjszakája 2023

Kutatók éjszakája logó

Kutatók éjszakája logó

A Kutatók éjszakája nemzetközi rendezvénysorozat 2005-ben indult. Magyarország 2006-ban csatlakozott. Azóta évről-évre egyre több intézmény nyitja meg hazánkban kapuit, szervez érdekes programokat, sok-sok településen, több száz helyszínen, több ezer eseményt meghirdetve sok tízezer érdeklődő/résztvevő látogatónak biztosít tartalmas estét.

Bár a kezdeményezés elsősorban a kutatói pálya népszerűsítését szolgálja, ezért leginkább a tizen- és huszonévesekre számít, az események vonzók és elég érdekesek ahhoz, hogy a kisgyerekektől a legidősebbekig mindenki megtalálja a számára izgalmas programokat. Korábban nagyobb felsőoktatási intézmények és kutatóintézetek szerepeltek döntően, de az utóbbi néhány évben egyre több kisebb intézmény, tehetséggondozással foglalkozó középiskola, cég, egyesület is csatlakozott a rendezvényhez. A Kutatók éjszakája rendezvény minden meghirdetett programja ingyenes.

Rendezvényünk plakátja

Az it-tanfolyam.hu 2023-ban is hirdetett programokat az eseményhez kötődően. Programjainkat elsődlegesen követőinknek, aktív hallgatóinknak és az alumni csoportunkban hirdettük meg, de persze nyílt rendezvényként valósult meg. Az eseményekre regisztrálni kellett a weblapon. A regisztrációs időszak másfél hétig tartott, szeptember 18-28-ig. Programjainkra szeptember 29-én 21:00-23:55-ig került sor.

21:00-21:30 – Kiss Balázs: Az ipari forradalom evolúciója: ipar 4.0 és 5.0, okos gyár
Az előadó áttekinti az ipari forradalom evolúcióját. Címszavakban: ipar 1.0 – gépek gőzzel/vízzel és ipari termelés (1780), ipar 2.0 – villamosítás és sorozatgyártás (1870), ipar 3.0 – automatizálás számítógépekkel/elektronikával (1970), ipar 4.0 – digitális transzformáció, AI, IoT, adatelemzés, kiberfizikai rendszerek (jelenleg), ipar 5.0 – emberközpontú megközelítés, fenntarthatóság, fokozott ellenálló képesség (legújabb iteráció). Az Európai Parlament 2016-os állásfoglalásából kiindulva, az okos gyárak koncepciójának ismertetésével folytatva, valamint praktikus tanácsok is előkerülhetnek zárásként – igény szerint. Az előadó évek óta foglalkozik okos architektúrák fejlődésének történetével, koncepciójával, szoftveres integrációjával és konfigurációjával. Szívesen osztja meg gondolatait, kutatási eredményeit a témáról, beszél saját kisebb és nagyobb léptékű okos projektjeiről. A program a Java tanfolyamaink orientáló moduljához kötődik.

21:35-22:10 – Kaczur Sándor: Algoritmusok vesebeteg-donorok párosítására
Hogyan működik 2007 óta Nagy-Britanniában a vesebeteg-donorok párosítása? Sima csere 2 pár esetén adódik. 3 pár esetén körbeadják a vesét egymásnak – ez már jóval összetettebb. A felépített óriási adatbázisban akár több száz lehetőség is adódhat. A probléma megfelelő párosítási algoritmus és számítógép nélkül, pusztán emberi erővel megoldhatatlan lenne. Az implementált algoritmus futási ideje mindössze 30 perc. A párosítást követően a következő lépés a műtétek egyidejűsége, és a donor szervek „utaztatása” minden lehetséges földi, vízi, légi úton és lehetséges közlekedési eszközzel. Hogyan működik mindez a gyakorlatban? Milyen korlátok, problémák vannak? Milyen adatok alapján dönthető el a betegek „kompatibilitása”? Ezek közül mi kapcsolódik az egészségügyhöz és a szállításhoz? Az előadó próbál válaszokat adni, de lehet, hogy a végén több lesz a kérdés, mint a válasz. Vajon egyáltalán felmerül a párosítási algoritmus hatékonysága ekkora társadalmi hasznosság mellett? A tavalyi előadás kibővült: újabb algoritmusokkal egészült ki. A program a Java tanfolyamaink orientáló moduljához kötődik.

22:15-22:40 – Kaczur Sándor: Naprendszer szimuláció: elméleti háttér, objektumorientált tervezés, megvalósítás, tesztelés Java és JavaScript nyelveken
Az előadó ismerteti a feladatspecifikációt, ennek objektumorientált tervezését, a térben elhelyezkedő objektumok pozíciójának leképezését a síkra, a tömegvonzás közelítő kiszámítását a modelltérben, és a megjelenítést. A megvalósítás során különböző technológiákat hasonlít össze, például HTML5 canvas és JavaScript, Java2D. A felépítés a szoftverfejlesztés klasszikus lépéseinek megfelel. Némi tesztelés is előkerül. Adódnak továbbfejlesztési lehetőségek is. Elengedhetetlen némi matematikai, fizikai háttér áttekintése látványosan (animáció, szimuláció, gamifikáció) történik. A program a Java SE szoftverfejlesztő tanfolyamunk tematikájához kötődik.

22:45-23:10 – Falus Anita, Tóth-Szabó Tamás, Horváth Zoltán Miklós: Karrierváltás után – az álláskeresés én néhány hónap KKV-s tapasztalatai szoftverfejlesztőként
Mennyire könnyű ma szoftverfejlesztőként elhelyezkedni szakirányú felsőfokú végzettség nélkül? Milyen kihívásokkal találkozhatunk a felvételi folyamat során? Milyen elvárásokat támasztanak a munkaadók egy junior szakemberrel szemben? Hogyan telnek a beilleszkedés után a hétköznapok junior fejlesztőként kis létszámmal működő informatikai profilú kisvállalkozásnál? A tanfolyamainkon 2021-ben és 2022-ben végzett előadók karrierváltó junior szakemberként személyes tapasztalataikról számolnak be és válaszolnak a kérdésekre. A program a Java tanfolyamaink orientáló moduljához kötődik.

23:30-23:55 – Szegedi Kristóf, Hollós Gábor: Gondolkodjunk logikusan!
Az előadás során áttekintjük az intelligencia, a kreatív problémamegoldó és logikus gondolkodás összefüggéseit és izgalmas feladatokból válogatva közösen megoldunk néhány fejtörő feladatot. Néhány példa: Hány éves a kapitány?CHOO + CHOO = TRAIN, Logikus gondolkodás teszt. Minden feladathoz adunk rávezető példákat – ha esetleg egyik-másik nem menne, akkor ebből ki fog derülni, hogy miket érdemes gyakorolni ahhoz, hogy sikerüljön.

 

A programjaink népszerűek voltak. 43 érdeklődő látogatót fogadtunk. Többségükben végig velünk tartottak. Elgondolkodtató párbeszéd alakult ki a vesebeteg-donorok párosításáról, valamint sok-sok kreatív ötlet került elő a logikus gondolkodás program fejtörőivel kapcsolatosan. Néhányan megragadták a lehetőséget, hogy több budapesti helyszínt is meglátogassanak – ahogyan ez megszokott a Kutatók éjszakája rendezvényeken hosszú évek óta. Kellemes hangulatban, tartalmasan töltöttük együtt az időt, aminek igazán örülök.

Szeretném megköszönni az előadó oktató kollégák és alumni hallgatóink színvonalas munkáját, igényes felkészülését. Köszönjük mindenkinek, aki részt vett a Kutatók éjszakája 2023 rendezvényünkön. Az előadások prezentációit tanfolyamaink hallgatói számára – a témához kapcsolódó témakörökhöz, ILIAS-ra feltöltve – tesszük elérhetővé.

Születésnap-paradoxon

Mennyi a valószínűsége, hogy n ember között van kettő, akiknek egy napon van a születésnapja? A meglepő a dologban az, hogy már 23 ember esetén a kérdéses valószínűség 1/2-nél nagyobb. Másképpen: már 23 ember esetén nagyobb annak az esélye, hogy megegyezik a születésnapjuk, mint az ellenkezőjének. Ez a 23 nagyon kevésnek tűnik. Ezért paradoxon.

Közismert néhány hétköznapi valószínűség. Íme néhány szabályos eset. A pénzfeldobás során 1/2 az esélye a fej és 1/2 az esélye az írás eredménynek (másképpen 50%-50%, azaz fifty-fifty). A kockadobás esetén 1/6 az esélye bármelyik számnak 1-től 6-ig. Két kocka esetén blogoltam már a dobott számok összegének alakulásáról, eloszlásáról: Kockadobás kliens-szerver alkalmazás.

Néhány egyszerűsítés

  • Az év 365 napból áll. Nem számítanak a 366 napos szökőévek.
  • A születések eloszlása egyenletes, azaz minden nap körülbelül ugyanannyian születnek. Nem számít, hogy hétköznap, hétvége, ünnepnap. Az áramszüneti városi legendák sem.
  • Nem vesszük figyelembe az azonos napon született ikreket. Persze ikrek születhetnek különböző napokon is.

Azonos születésnap valószínűsége grafikonon

Lássuk, hogyan alakul az azonos születésnap valószínűsége az emberek számától függően! Grafikonon ábrázolva:

A fenti grafikonhoz szükséges adatok könnyen előállíthatók az alábbi Java forráskóddal:

A fenti Google Chart típusú szórásgrafikon (Scatter Chart, korrelációs diagram) megjelenítéséhez adatpárok sorozata szükséges. Ezek a konkrétumok (70 db adatpár), görgethető:

Hasonló grafikon készítéséről szintén blogoltam már: Céline Dion – Courage World Tour.

Párok előállítása

Az emberek születésnapjainak összehasonlítása párokban történik. 23 ember esetén 23*22/2=253 pár van. Általános esetben n ember esetén (n*(n-1))/2 pár adódik. A levezetés részletei a források között megtalálható. 59 ember esetén 1711 pár adódik és szinte garantált az előforduló azonos születésnap, hiszen már 0,99 ennek a valószínűsége.

Az alábbi Java forráskód – rekurzív módon – előállítja a 23 konkrét esetre a párokat, az embereket 1-23-ig sorszámozva. Kombinációk:

A main() metódusban az i változó paraméterezhető és a konkrét eset könnyen intervallumra változtatható. Eredményül ezt írja ki a program a konzolra, görgethető:

Kísérleti ellenőrzés

Tekintsünk például 1000 esetet! Készítsünk Java programot, amely 23 db véletlen születésnapot generál! Legyen ez a születésnap sorszáma az évben (másképpen hányadik napon született az ember az évben). Ez lényegesen egyszerűsíti a megoldást, összevetve a dátumkezelésen alapuló megközelítéssel. Ajánljuk a szakmai blog dátumkezelés címkéjét az érdeklődőknek, ahol megtalálhatók a témához kapcsolódó Java forráskódrészletek részletes magyarázatokkal kiegészítve. Íme a többféle generikus listát és programozási tételt használó forráskód:

Érdemes elemezni, tesztelni a fenti forráskódot: milyen lépésekben, milyen adatszerkezeteket épít. Hasznos lehet lambda kifejezésekkel kiegészíteni, módosítani a programot. Részlet a program szöveges eredményéből:

A 12. sorban lévő számhármasok jelentése: esetszám 1-től, azonos nap, előfordulás száma. Például: a kísérlet során a 8. esetben az év 225. napja azonos 3 embernél. Természetesen nincs garancia arra, hogy az 1000 eset vizsgálatánál mindig 500-nál nagyobb kedvező esetet kapunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra Objektumorientált programozás alkalmaihoz kötődik.

Források

Galéria véletlen sorrendben

Adott egy mappában lévő sok-sok képfájl, többféle formátumban, kiterjesztéssel. A feladat az, hogy időzítve jelenítsük meg ezeket a képeket véletlen sorrendben saját fejlesztésű Java program segítségével. A tervezés során áttekintünk többféle lehetőséget. Bemutatjuk a megoldáshoz szükséges lépéseket és a program működését.

A program tervezése

A szükséges bemeneti adatok

  • Egy mappa, abszolút vagy relatív útvonal, ahol a képfájlok megtalálhatók. A mappa átvehető a program paramétereként (ha parancssorban meghívva átadjuk) vagy lehet az aktuális mappa (ahonnan a programot jar fájlként elindítjuk). A program a mappában közvetlenül megtalálható képeket olvassa be. Az ott található almappákba nem megy bele.
  • A képfájlok különböző kiterjesztéseit tárolni kell. Többféle is lehet, így ehhez szükséges alkalmas adatszerkezet. A listában nem szereplő kiterjesztéssel rendelkező fájlok nem kerülnek feldolgozásra.
  • Érdemes a képfájlokat egy lépésben betölteni a memóriába. Így a program takarékos erőforrásként bánik a tárhellyel (merevlemez, pen-drive, SSD, hálózati meghajtó). Csak egyszer dolgozza fel (olvassa végig) a mappát. Feltételezzük, hogy a képfájlok beférnek a memóriába.
  • A program teljes képernyős, amiből elérhető a rendelkezésre álló terület mérete, ahol megjeleníthetők a képek. A program a betöltött képfájlok méreteihez is hozzáfér. Ez a méret kétféle lehet: bájtban kifejezhető a képfájl elfoglalt tárhelye, illetve pixelben kifejezhető a képfájl dimenziója (másképpen a megjelentéséhez szükséges terület mérete a képernyőn).

Hogyan működik a program?

  • Egyszerre egy kép jelenik meg. Időzítő befolyásolja a képfájlok közötti váltást. Meghatározza, hogy a képfájlok meddig látszanak (másképpen: eltelt idő, késleltetés, várakoztatás). A swing GUI-hoz tartozó időzítőt kell hozzá használni.
  • A program alkalmazkodik a képernyő, kijelző felbontásához, képarányához. A program végtelenítve működik, Alt + F4 billentyűkombinációval lehet kilépni belőle.
  • A képfájlok megjelenítésük során optimálisan, dinamikusan kitöltik a rendelkezésre álló téglalap alakú területet. A túl kicsi képeket nagyítani kell. A túl nagy képeket kicsinyíteni kell. Mindezt úgy, hogy a képarányt (aspect ratio) meg kell tartani, hogy a képek ne torzuljanak el. Az alábbi három példa balról-jobbra mutatja az optimális kitöltést, illetve azt a két esetet, ami akkor történik, amikor a kép méretéhez képest a megjelenítésre használható terület túl magas vagy túl széles:
  • A galériába tartozó képek közötti véletlen sorrendet meg kell oldani. A program a memóriába betöltött képek sorszámai alapján valósítja meg a véletlenszerű kiválasztást. A sorszámok összekeverednek. Egymás után nem jöhet ugyanaz a kép többször. Ha a képek „elfogynak”, akkor a program végtelenített működése szerint a képek sorszámai újra összekeverednek és „lejátszásra kerülnek”.

A program megvalósítása

A mappát a java.io csomag File osztályából létrehozott folder objektum tárolja (a "./"  szövegliterál jelöli az aktuális mappát). A feldolgozandó képfájlok kiterjesztéseinek listáját egy dinamikus tömbből létrehozott generikus lista oldja meg: ArrayList<String> imageFileExtensionList=new ArrayList<>(Arrays.asList("JPG", "JPEG", "PNG", "GIF")). Egy képfájl memóriabeli tárolását a  java.awt.image.BufferedImage típus valósítja meg, amelyekből szintén generikus lista épül: ArrayList<BufferedImage> imageList. A grafikus felhasználói felülethez tartozó javax.swing csomagbeli Timer osztály szükséges, például 2 mp-es várakoztatás és eseménykezelés: timer=new Timer(2000, (ActionEvent) -> { showRandomImage(); }). A GUI JFrame leszármazott keretobjektum. A grafikus felhasználói felület a teljes képernyőt elfoglalja: setExtendedState(MAXIMIZED_BOTH) és setUndecorated(true). A keretre egyetlen JLabel típusú, fekete hátterű lbImage objektum kerül, az alapértelmezett határmenti elrendezésmenedzser közepére (vízszintesen és függőlegesen egyaránt). A képfájlok sorszámai (a későbbi véletlen kiválasztáshoz) az imageIndexList generikus listába/kollekcióba kerülnek. Az index változó jelöli az aktuális, memóriába betöltött képfájl sorszámát, ami kezdetben nulláról indul.

A képfájlok betöltése az alábbiak szerinti:

A fájlok kiterjesztésének szűrése a FileFilter interfész accept() metódusának megvalósításával történik. A fenti forráskódban mindez tömör, lambda kifejezéssel (művelettel) valósul meg. A fájlszűrőn az képfájl megy át, aminek a nagybetűssé alakított kiterjesztését tartalmazza az  imageFileExtensionList kollekció. Az i-edik képfájl memóriába való betöltését az ImageIO osztály statikus read() függvénye oldja meg. A képfájlok sorszámainak véletlen összekeverése kezdetben megtörténik: Collections.shuffle(imageIndexList). A fájlkezelés miatt kötelező kivételkezelést most – itt a szakmai blogban – nem részletezzük.

Az időzítő eseménykezelése, a 2 másodpercenkénti képváltás így valósul meg:

A program alábbi metódusa felel a képarányhoz kötődő műveletekért:

A program tesztelése

  • Érdemes lehet tesztelni nem ajánlott (rossz) megoldásként azt, hogy a program az időzítőnek megfelelően, dinamikusan olvasná be a képfájlokat, amivel lényegesen kevesebb memóriát igényelne.
  • Van-e reális korlát arra, hogy mennyi, mekkora képek „férnek el” a memóriában?
  • Hogyan befolyásolja a képfájlok száma és az általuk elfoglalt tárhely a program indulását?
  • Mi történik, ha nincs megfelelő kiterjesztésű képfájl a mappában? És ha több 1000 kép van benne?
  • Hogyan jelennek meg (megjelennek-e) az animációt tartalmazó képfájlok? Például a GIF képformátum nem csak statikus egyetlen képet tartalmazhat, hanem lehet animált is.
  • Teljesen megvalósul-e a reszponzivitás? Ha igen, mi indokolja? Ha nem, miért nem és hogyan lehetne megoldani?

Ha átmenetileg kikapcsoljuk a teljes képernyős megjelenítést, akkor könnyen tesztelhetővé válik a megvalósuló reszponzivitás. Másképpen a program dinamikusan alkalmazkodik a rendelkezésre álló (rajzolható) terület méreteihez (szélesség és magasság):

A program továbbfejlesztési lehetőségei

  • A program rekurzívan bejárhatná a folder által megjegyzett útvonalból kiindulva a teljes (al)mappaszerkezetet.
  • A program paraméterezhető lehetne a képfájlok kiterjesztéseivel. Akár konfigurációs fájlból is beolvashatná az imageFileExtensionList adatszerkezetet, például XML, JSON formátumban is.
  • A program ellenőrizhetné, hogy a mappában lévő összes kép befér-e a memóriába. A program kezelhetne ehhez kötődően többféle limitet: például az első 100 db képet töltené be, és/vagy csak annyi képet tölt be, ami belefér például 64 MB-ba.
  • A program mutathatná folyamatindikátorral induláskor a képfájlok betöltését. Vagy betölthetné például az első 5 db-ot és háttérszálon a többit, amíg az első 5-öt „lejátssza”.
  • Ha például a program 10 képet tölt be mappában lévő képfájlokból, akkor ezek 0-tól 9-ig sorszámozódnak. A sorszámok összekeverve következnek. Ha az első menetben az utolsó kép sorszáma például a 7 volt, akkor a következő ismétlődő menet nem kezdődhetne 7-tel.
  • A programból ki lehetne lépni az Esc billentyűvel is. KeyListener interfésszel megoldható.
  • A program kezelhetne egyéb képfájlformátumokat is: például animált GIF, statikus WebP, animált WebP.
  • A program könnyen kiegészíthető prezentációk diáinak időzített/felülbírált megjelenítésére.
  • A program által beolvasott képfájlokból generálható PDF fájl is (rácsos sablonnal, például 6 db kép laponként). A feldolgoztt mappában lévő képfájlok könnyen feltölthetők FTP szerver adott mappájába, átméretezhetőek csoportosan, elküldhetők nyomtatási sorba is.
  • Érdemes megismerni a JDK-n kívüli egyéb, képfájlokat kezelő osztályok, csomagok funkcióit, például: OpenIMAJ, TwelveMonkeys ImageIO.
  • A swing-es felület kiegészíthető mappatallózással, egyéni fájl(típus)szűrőkkel, paraméterezhető lehet a véletlenszerű kiválasztás algoritmusa, változtatható az időzítés késleltetése.
  • Mivel a program teljes képernyős, így elrejthető az egérmutató.
  • A képek „lejátszásából” lehetne generálni animált GIF-et.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb animációs, szimulációs programot tervezni, kódolni, tesztelni.

Beszámoló: it-tanfolyam.hu STEM nyári tábor 2023

A STEM mozaikszó eléggé közismert: a tudományos-technológiai tudományágakat (természettudomány, technológia, mérnöki tudomány és matematika) foglalja egybe, interdiszciplináris megközelítésben. A STEM területén való elmélyedés során a hangsúly nem a mit tanulunk/tanítunk, hanem inkább a hogyan tanulunk/tanítunk. Nem azonnal ad kézzel fogható válaszokat, de kitartó próbálkozással – saját élménnyel – elérhető az eredmény.

Az it-tanfolyam.hu oktatói csapata 2023-ban először hirdetett STEM nyári tábort. Erről számolunk be röviden ebben a blog bejegyzésben. Tervezzük, hogy a jövőben rendszeresen fogunk szervezni STEM nyári tábort.

A STEM nyári tábor koncepciója

2023. nyarán 4 turnusban hirdettünk programozás fókuszú STEM nyári tábort:

  • 1. turnus: július 3-7-ig,
  • 2. turnus: július 10-14-ig,
  • 3. turnus: július 17-21-ig,
  • 4. turnus: július 24-28-ig.

Előzetes tudás- és igényfelmérést végeztünk, így alakítottunk ki 3 db csoportot, ezek: Java kezdő, Python kezdő, Python haladó. A kiinduló célcsoportot tanfolyamaink karrierváltó hallgatóinak gyermekei jelentették, akik mellé toboroztunk még. A korosztály a 16-20 éves diákok voltak a 11-14. évfolyamról. A 11-12. évfolyamosok közül sokan informatika, digitális kultúra érettségi előkészítő fakultációra jelentkeztek, jártak, járnak és ebből érettségiznek/érettségiztek. A már korábban érettségizett 13-14. évfolyamosok körülbelül fele az OKJ utód szakmajegyzékhez tartozó szakképzésben tanult.

Mindegyik turnus azonos tematikával valósult meg. Turnusonként 3 db párhuzamos, 10-12 fős csoportokat indítottunk. Voltak közös elméleti programok, szakmai kirándulás, illetve külön-külön Java és Python nyelven megvalósuló gyakorlati programok, valamint projektbemutatóra is sor került. Igyekeztünk érinteni sokféle STEM területet: fizika, kémia, biológia, csillagászat, térinformatika, mesterséges intelligencia, szimuláció, játékprogramok, matematika, orvostudomány; mindegyiket a programozáshoz kapcsolva. Végeztünk tervezést, kódolást, tesztelést is. Belefért némi pályaorientáció is.

A STEM nyári tábor órarendje

Turnusonként 4 oktató kollégával és vendégelőadókkal hétfőtől-péntekig minden nap 8 és 18 óra között biztosítottuk a jelenlétet, felügyeletet. 40 órában szakmai programokat (elmélet+gyakorlat) kínáltunk. Reggelenként és késő délutánonként 1-1 órában offline, egyéni vagy csoportos játékok voltak kipróbálhatók. Ez mindösszesen 50 órát jelentett. Délelőttönként 20, 30 és 60 perces programokat terveztünk, délutánonként 120 és 240 perceseket. Szerdára szakmai kirándulást, gyárlátogatást ütemeztünk be. Íme az órarend áttekintő formában:

Íme az órarend naponként lapozható formában, benne a részletekkel:

Előzetes tapasztalataink

Előzetes tapasztalatainkat több forrásból merítettük, inspirálódtunk:

Köszönetnyilvánítás

Köszönjük résztvevő diákjainknak az aktivitást, a lelkesedést, a sok-sok elgondolkodtató kérdést, az offline kapott/szerzett élményeket, a pozitív visszajelzéseket.

Szeretnék köszönetet mondani együttműködő partnereinknek: LEGO Manufacturing Kft., REGIO Játékkereskedelmi Kft., Revolt Kereskedelmi Kft., Pannon Kincstár Humán Szakképző Központ.

Végül szeretnék köszönetet mondani minden oktató kollégámnak konstruktív részvételüként, kitartásukért a projekt teljes életciklusában. A tervezési, a szponzorszerző, a promóciós és a megvalósítási szakaszokban egyaránt 2023. április elejétől július végéig. Kiemelem korábbi és az aktuális projekthez kötődő tananyagfejlesztési tevékenységüket. A sikeresen lezárt projektünket augusztusban kipihenjük. 😉

Egy matematika érettségi feladat megoldása programozással 2023

érettségi logó

érettségi logó

A 2023-as középszintű matematika érettségi feladatsorból az 5. feladat alkalmasnak bizonyult arra, hogy a programozás eszköztárával oldjuk meg. Rögtön többféleképpen is, hogy összehasonlíthatóak legyenek egymással. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor letölthető az oktatas.hu-ról.

5. feladat

Adja meg a 420 és az 504 legnagyobb közös osztóját! Megoldását részletezze!

Íme kulcsszavakban, mit érdemes átgondolni a megoldás előtt: számelmélet alaptétele, prímfelbontás (prímtényezős felbontás, faktorizáció), osztópár, prímek szorzata, prímtényezők szorzata, kanonikus alak, euklideszi algoritmus.

1. megoldás

Az első megoldás az euklideszi algoritmus alkalmazása. A metódus paraméterezhető. Pozitív paramétereket vár és képes kiírni a konzolra a két szám legnagyobb közös osztóját. A módszer alapötlete: a legnagyobb közös osztó nem változik, ha a nagyobb számot a két szám különbségével helyettesítjük. Ezzel csökken a nagyobb szám, így a cserék ismétlésével egyre kisebb számokat kapunk, amíg a két szám egyenlővé nem válik. Ez az eddigi számpároknak, így az eredeti számpárnak is a legnagyobb közös osztója. Az eredményt az utolsó nem nulla maradék while(m!=0) adja meg int lnko=b;. Az algoritmus lépésszáma csökkenthető, ha a>b, de ennek ellenőrzése nélkül is működik. Mivel a feladat kéri a megoldás részletezését, így aktiválva a megjegyzésbe tett forráskódokat, a kiírásból könnyen érthető, mi és hogyan történik:

A konkrét esetben a metódus eredménye: lnko (420; 504) = 84. Nagyobb számok esetében „beszédesebb” a program kiírása, több lépésben írja ki a megoldáshoz vezető utat, ezért érdemes többféle paraméterrel is tesztelni a metódust.

2. megoldás

A második megoldás a prímtényezős felbontásokon alapul. Mindkét szám esetén gyűjtsük össze listában ezeket, majd vegyük a két lista közös részét. (Ha lista helyett halmazok lennének, akkor metszet programozási tétel lenne.) A generikus listákba prímszámok kerülnek és bármelyik többször is előfordulhat. (Ezért most a leghosszabb közös részsorozat(ok) előállítása szükséges.) Addig osztjuk a számot 2-vel, amíg lehet, utána következik a többi prímosztó, amíg vannak. Érdemes több metódusra szétosztani a megoldást, mert jóval áttekinthetőbb és karbantarthatóbb Java forráskódot eredményez. A beszédes változó, objektum és metódusnevek is segítenek a megértésben. A második megoldás természetesen ugyanazt az eredményt adja, mint az első megoldás. Aktiválva a megjegyzésbe tett forráskódokat, a kiírásból most is könnyen érthetővé válik (középiskolás matematikaóra-szerűen), mi és hogyan történik:

Kanonikus alakban: 420 = 22 * 3 * 5 * 7, 504 = 23 * 32 * 7, így lnko (420; 504) = 22 * 3 * 7. Azaz összeszorozzuk a közös prímtényezőket az előforduló legkisebb hatványon.
A megoldás erősen épít a generikus kollekciók esetén jól használható Stream API lambda kifejezéseire. Ezeket most nem részletezem, helyette ajánlom a szakmai blogból a lambda kifejezés címkét.

Érdemes átgondolni

  • Nagy prímszámok esetén az euklideszi algoritmus nem hatékony. Az algoritmus végrehajtása kifejezetten lassú például a Fibonacci-számok esetén. A prímtényezőkre bontás feltételezett bonyolultságát számos kriptográfiai algoritmus használja ki. Vannak különleges esetek is, például: egyforma számok, az egyik szám 1, a két szám egymás többszöröse.
  • A feladat nem kérte a legkisebb közös többszörös meghatározását, de ha tudjuk a lnko(a, b)-t, akkor abból könnyen adódik a lkkt(a, b)=a*b/lnko(a, b).
  • A legnagyobb közös osztó tulajdonságait megismerve az euklideszi algoritmus könnyen optimalizálható. Számos esetben ellenőrzést végezhetünk, illetve triviális alapesetek is vannak. Létezik kiterjesztett euklideszi algoritmus is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 9-12. óra: Metódusok, rekurzió, valamint 17-28. óra: Objektumorientált programozás alkalmaihoz kötődik.