Keresztrejtvény készítése

Támogatjuk a keresztrejtvények készítését Java programmal. A program grafikus felülete eszköztárból és a keresztrejtvényből áll. Az elkészült programban 10×10-től 15×15-ig beállítható négyzetrács készíthető elő. A tiltott négyzetek száma 15-től 30-ig beállítható. Mivel a tiltott négyzetek helyzete véletlenszerű, így nem biztos, hogy az elsőre jó/szerencsés lesz, ezért újragenerálható a négyzetrács. A program a tipikus követelményeknek megfelelően sorfolytonosan sorszámozza a négyzetrács elemeit, ami alapján megadhatók hozzá a vízszintes és függőleges feladványok. A program az elfogadott négyzetrácsot többféle képformátumban is el tudja menteni.

Az elkészült Java program grafikus felülete

Objektumorientált tervezés

A keresztrejtvény ábrája egy négyzetrácsból áll, amelyben rejtvénymezők helyezkednek el. A rejtvénymezőnek megfelel egy örökítéssel felüldefiniált címkekomponens. A rejtvénymezőt körülveszi egy szegély/keret, tiltott vagy sem állapotától függően fekete vagy fehér a háttérszíne, valamint van a bal felső sarkához igazított kis méretű betűvel nem kötelezően megjeleníthető sorszáma. A tiltott és sorszám tulajdonságait kell tudni beállítani és megkérdezni. Ez a feladatban a RejtvenyMezo POJO. A négyzetrács sorai és oszlopai azonos méretűek (pixelre és darabszámra egyaránt).

Algoritmus a keresztrejtvény sorszámozására

A rejtvénymezők kétdimenziós négyzetes mátrixban/tömbben helyezkednek el. A sorszámozáshoz hasznos, ha a négyzetrácsot körbeveszi egy tiltott rejtvénymezőkből álló keret. Először a rács sorain és oszlopain végighaladó egymásba ágyazott ciklusok létrehozzák a POJO-kat úgy, hogy a négyzetrács keretén lévő rejtvénymezők tiltottak, a többi nem tiltott. Ezután véletlenszerűen ki kell választani – a még nem tiltottak közül – a szükséges mennyiségű tiltott rejtvénymezőt. Ezután sorfolytonosan sorszámozni kell azokat a rejtvénymezőket, ahol vízszintes vagy függőleges feladvány kezdődik. Ehhez is két egymásba ágyazott ciklus kell, amelyben minden még nem tiltott rejtvénymező egyre növekvő sorszámot kap, ha tőle balra tiltott és tőle jobbra nem tiltott rejtvénymező helyezkedik el, de akkor is, ha felette tiltott és alatta nem tiltott rejtvénymező található.

A keresztrejtvényt sorszámozó algoritmus Java megvalósítása

Továbbfejlesztési lehetőségek

  • A feladványok listázhatók és kideríthető a hosszuk.
  • A tiltott rejtvénymezők véletlenszerű elhelyezése helyett lehetne valamilyen szabály, stratégia az egymáshoz való helyzetükre, távolságukra, közvetlen szomszédságukra vonatkozóan. Figyelembe vehetnénk valamilyen szimmetriát is, mintákat, alakzatokat is. Véletlenszerű elhelyezésük nem biztos, hogy mindig jó/szerencsés: például a tiltott rejtvénymezők körbezárhatnak egy nem tiltottat, hosszabb feladványokat nehezebb találni…
  • A Java SE szoftverfejlesztő tanfolyam tematikájához kötődően többféle szótárból, fájlformátumból betölthetünk a feladványokhoz használható, például 7 betűs országnevek, 2 betűs kémiai elemek, női/férfi keresztnevek, autójelek, pénznemek, szinonimák…
  • A Java EE szoftverfejlesztő tanfolyam tematikához kötődően többféle webes adatforrásból, Wikipédiából, szótárból, API hívásokkal letölthetünk a feladványokhoz használható listákat, meghatározásokat, kulcs-érték párokat. A swing-es felületet lecserélhetjük böngészőben futó webes GUI-ra is.
  • A Java adatbázis-kezelő tanfolyam tematikájához kötődően a fentiek kiegészítéseként tervezhetünk és építhetünk helyben tárolt tudástárat, adatbázist, amiből hatékonyan lekérdezve adhatunk feladványokat a keresztrejtvényhez.
  • Miután a fentiek szerint valahogyan – tipikusan visszalépéses algoritmussal – meghatároztuk a feladványokat, a keresztrejtvényből menthetünk kitöltött változatot is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Rómeó és Júlia

Vajon hogyan kerül elő a Rómeó és Júlia az it-tanfolyam.hu szakmai blogban témaként? Hiszen mégiscsak egy Shakespeare színműről/tragédiáról van szó. Vajon mit programozhatunk Java nyelven ehhez kötődően épp Valentin-napon? Mindjárt kiderül.

Tegyünk fel egy kérdést és próbáljunk rá válaszolni! Vajon ki szereti jobban a másikat? Rómeó vagy Júlia?

Induljunk el az adatforrásból, amihez alkalmazkodnunk kell. A színmű angol nyelven publikusan elérhető XML formátumban: The Tragedy of Romeo and Juliet. Az XML fájlok könnyen feldolgozhatók Java nyelven. Részletek a fájlból (görgethető):

Az XML fájl felépítését tanulmányozva (1-5 alapján) megállapíthatóak az alábbiak:

  • A színmű öt felvonásból áll, ezeket <ACT></ACT> csomópontok jelölik.
  • Egy „adagnyi” beszédet a <SPEECH></SPEECH> csomópont fog össze.
  • A csomópontban található, hogy ki beszél: ez a <SPEAKER></SPEAKER> elem. A mesélő, kar esetén ez az elem üres, és a null-t nem szabad feldolgozni.
  • A csomópontban találhatók a szabadvers kimondott sorai: ezek a <LINE></LINE> elemek. Legalább egy sor minden beszédben van, és nem tudjuk előre a számukat.
  • Nem következetes helyen a DOM-ban, többféleképpen beágyazva és önállóan is előfordulhatnak <STAGEDIR></STAGEDIR> elemek. Ezek a színmű Kosztolányi-féle magyar fordításában dőlt betűvel megjelenő – cselekvésre utaló – színpadi utasítások. Van köztük csók is, amit az XML-ből nem szabad feldolgozni, bár erősen ráutaló magatartás. 🙂
  • Nem tudjuk előre, hogy hány csomópont található a fájlban.

A Java program készítése, tesztelése közben – mintegy mellékesen – megtudhatjuk, hogy Rómeó 612 sorban 24075 betűnyi, Júlia 544 sorban 21855 betűnyi szöveget mond. Persze nem mindet egymásnak mondják. Eközben vajon hányszor mondják ki a szeret, szeretem, szeretlek szavakat? A ragoktól, toldalékoktól, kis- és nagybetűket nem megkülönböztetve és attól is eltekintve, hogy éppen kinek/kiknek mondják amit éppen mondanak, egy becsléshez elegendő, ha a love szóra fókuszálunk (számíthatna a loving alak is).

Az alábbi Java forráskód betölti az XML fájlt a memóriába. Ezután kiválogatja a beszédeket. Ha a beszélő élő ember (szereplő), akkor érdekes, hogy mit/miket mond. Ha ROMEO vagy JULIET mondja az adott sort, akkor azt a program kiválogatja két generikus listába ( romeoLineList és julietLineList) beszédnyi adagokban. Ez nem szétválogatás programozási tétel, mert nem minden beszéd minden sora kerül valahová. A kivételkezelés nem kidolgozott.

Könnyen megkaphatjuk, hogy Rómeó hány darab olyan sort mond, amely tartalmazza a love szót. Például ennek a lambda kifejezésnek kiíratva az eredményét a konzolra:

Könnyen megkaphatjuk Rómeótól a 53 sornyi szöveget is így:

Íme Rómeó kiválogatott sorai (az 5. sorban kétszer is előfordul a love, de ez most nem számít):

Hasonlóan megkaphatjuk Júlia 38 kiválogatott sorát is:

Próbáljunk válaszolni a fentiek alapján a feltett kérdésre! Következtethetünk arra, hogy Rómeó jobban szereti Júliát. Legalábbis többször említi. 53>38. Persze tudjuk, hogy mindez nem ilyen egyszerű. 🙂

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, 25-28. óra: Objektumorientált programozás 3. rész, valamint a Java EE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: XML feldolgozás alkalmaihoz kötődik.

Nagyon különböző megoldásokat készíthetünk és szerteágazóan gyakorolhatunk, ha:

  • az XML fájlt kézzel mentjük a webről és utána a helyi fájlrendszerből dolgozzuk fel,
  • az XML fájlt közvetlenül a webről, dinamikusan olvassuk,
  • csak beépített XML-feldolgozást használunk,
  • külső XML API-t használunk,
  • DOM, SAX, XSL, van-e DTD,
  • XPath kifejezésekkel adunk választ a kérdésre,
  • a fenti didaktikusan egyszerű megoldás helyett haladóbb eszközöket (például: Stream API-t) használunk.

Népesedési világnap

Népesedési világnap logó

Népesedési világnap logóAz ENSZ 1987-ben július 11-ét a népesedési világnappá (World Population Day) nyilvánította. Bolygónk lakossága aznap érte el az 5 milliárdot. További kerek számok voltak: 1999. október 12-én 6 milliárd, 2011. október 30-án 7 milliárd. További kerek számok várhatóak: 2023 – 8 milliárd, 2037 – 9 milliárd, 2057 – 10 milliárd. A KSH elemzése részletes elemzéseket közöl évről-évre a témában, például: 2019-ben, 2018-ban. A worldometer.info weboldalon folyamatosan frissülő kimutatások érhetők el a népességhez globálisan, valamint országonként is: például Magyarország aktuális népesedési adatai.

A népesedési világnap inspirált egy Java program megtervezésére és megírására. A swing GUI-s program megjeleníti a worldometer.info weboldalról kinyerhető adatok alapján régiónként (kontinensenként) az elérhető adatokat 1950-től 2020-ig az alábbiak szerint egy világtérképen.

Az elkészült program

Népesedési világnap Java program

Tervezés

Objektumorientált szemlélettel, MVC architekturális tervezési mintát követünk, angol nyelvű interfész, osztály, változó, objektum, metódus nevekkel. A projekt neve: WorldPopulation, a csomag neve: worldpopulation. Amit lehet, konstansként interfészbe (szeparálva) teszünk és az MVC rétegekhez kötődő osztályok implementálják. A modell minden évszámhoz tárolja a szükséges adatokat, mindezt egyetlen betöltéssel/letöltéssel éri el. A program kliensként hat régióra vonatkozó adatot gyűjt össze, alkalmazkodva a szerver adatforráshoz. A címsorban lévő összesített adat is elérhető közvetlenül a weboldalon, de a kisebb adatforgalom érdekében hasznos inkább a kliensben összesíteni. Mindössze egyetlen eseménykezelés szükséges: a csúszka beállításával megadott évszám alapján frissíteni kell a régiók címkéit és az ablak címsorát. Öröklődés hasznos a feladat megoldása során: egyrészt interfészek, másrészt osztályok között.

Interfészek

Az ősinterfész a WorldPopulationConstants, benne az évszám intervallum MIN_YEAR és MAX_YEAR határaival, valamint a megjeleníthető régiók neveivel tömbben: REGION_NAME_ARRAY. Két utódinterfész épül az ősre: ModelConstants és ViewConstants. Előbbi interfész az adatforráshoz kapcsolódik: URL_COMMON az URL eleje, URL_ARRAY az URL végei régiónként tömbben. Utóbbi interfész a megjelenítéshez kapcsolódik: WORLD_MAP_IMAGE a háttérkép annak WORLD_MAP_RECT méretével együtt, valamint a régiónkénti REGION_RECT_ARRAY téglalapok tömbje a kezdeti pozíciókkal/méretekkel, TITLE a sablon a program címsorához (frissítendő az évszámmal és az összesített népességgel). A megfelelő utódinterfészt mindig implementálja az MVC szerint hozzá illeszkedő osztály.

Osztályok

A belépési pont a WorldPopulation.java fájlban található.

Három összetartozó elemi adatot fog össze egybe a RegionData POJO, ezek name, year, population nevű rendre String, int, long típusú adatok. Például: Európa, 2020, 747643253. Tartalmaz két függvényt: getPopulation(), valamint toString(). Utóbbi HTML formátumban adja vissza a megjelenítendő adatokat.

A JLabel-ből származik az igényekhez alakított RegionLabel osztály. Ennek van előre megadott pozíciója, mérete, betűtípusa, betűmérete, sárga háttérszíne, piros kerete. Ezenkívül a téglalap átlátszó, valamint a benne megjelenő HTML tartalom vízszintesen középre igazított. Némi extra funkció, hogy egérrel megfogva – drag and drop – áthelyezhető, ami a MouseMotionListener egérmozgást figyelő interfész mouseDragged() metódusának felülírásával válik lehetővé. A mozgathatóságáért saját maga felel. Példaként közöljük az osztály teljes forráskódját:

A webről adatokat szerez és tárolja a Model osztály, a java.io és java.net csomagokra építve. Egy példa: a https://www.worldometers.info/world-population/europe-population/ oldal forrásából nyeri ki az osztály az alábbi adatokat:

Ezek parszolását követően elkészül egy optimálisnak tekinthető, generikus listákból álló regionListArray tömb adatszerkezet. A parszolás történhet egyszerű szövegkezeléssel vagy JSON feldolgozással is. Erre épülnek a konstruktorral és vezérlővel összehangoltan működő getter metódusok: getHTML(), getRegionList(), getRegionData(), getPopulation(). A JSON adatforrás feldolgozását most nem részletezzük, de hasonlóról blogoltunk már: Időjárás Budapesten.

A grafikus felhasználói felületet adja a JFrame utód View osztály. Három GUI komponensből áll: pnWorldMap – háttérkép JPanel, lbYear – kiválasztott/aktuális év JLabel, slYear – kiválasztható/görgethető aktuális év JSlider. Izgalmas megoldani egymásra/egymáson elhelyezni a komponenseket. Egy JLayeredPane komponens  DEFAULT_LAYER rétegére kerül a térképet tartalmazó háttérkép, majd a  PALETTE_LAYER rétegére kerül dinamikusan a hat  RegionLabel osztályú/típusú objektum. A csúszka komponens slYearStateChanged() eseménykezelő metódusa vezérlőként megszólítja a modell réteget és a visszakapott adatokkal frissíti a nézet réteget (a címsorban lévő összesítéssel együtt, ezres szeparátorokkal).

Ötlet továbbfejlesztésre

Hat különböző weboldal forráskódjából kell összegyűjteni a megjelenítendő adatokat. Ez 2020-ban régiónként 71 számot jelent és hat régió van. Érdemes lehet olyan adattárolást megvalósítani, amely csökkenti a szerverhez fordulások számát, illetve a letöltendő adatok mennyiségét. Hiszen a múltbeli évekhez kötődő historikus adatok nem változnak. Ha ezekre valamilyen formában a program emlékszik, akkor elegendő az utolsó tárolt évből kiindulva az aktuális évig évenként, régiónként lekérni mindössze 6, 12, 18… számot, a program utolsó futtatásának évéből kiindulva. Ez lényegesen kevesebb lenne, mint a jelenlegi 6*71 lekért szám. A koncepció kulcsszava: inkrementális adatfrissítés. Ha megvalósítjuk az ötletet, akkor figyelni kell arra, hogy az aktuális/utolsó évben az adatok akár másodpercenként is változhatnak.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik (ha a swing GUI-ra koncentrálunk és az adatok helyi fájlrendszerből elérhetők), és a Java EE szoftverfejlesztő tanfolyam tematikájához kapcsolódik (ha az adatokat közvetlenül a webről olvassuk).

Dr. Sheldon Cooper szólánc játéka

Sheldon, Agymenők

Sheldon szólánc kiemelt képDr. Sheldon Cooper karakterét nem kell bemutatni. Az Agymenők (The Big Bang Theory) című sorozat 2. évad 5. epizódjának címe A vitatkozás nagymestere (The Euclid Alternative). Nagyon találó az epizód címe magyarul. Miközben Penny reggel Sheldont munkába viszi, Sheldon az autóban kémiai elemek nevéből álló szólánc játékával különösen Penny agyára megy (pedig a játékot Penny nyeri ?):

A játék során Sheldon az alábbi kémiai elemeket mondja:

  • magyar nyelven: Hélium ↦ Mangán ↦ Neptúnium ↦ Magnézium ↦ Molibdén ↦ Nitrogén ↦ Nobélium ↦ Mendelévium
  • angol nyelven: Helium ↦ Mercury ↦ Ytterbium ↦ Molybdenum ↦ Magnesium ↦ Manganese ↦ Europium ↦ Mendelevium

Támogassuk meg ezt a játékot! Készítsünk olyan programot Java nyelven, ami segít(ene) felkészülni Sheldon szólánc játékára!

A szükséges lépések áttekintése

  • Gyűjtsük össze a kémiai elemek nevét magyar nyelven a Wikipédia – Kémiai elemek listája szócikkéből és rendezzük ábécé sorrendbe!
  • Építsük be az elemlistát a program adatmodelljébe!
  • Indítsuk el a lépésszámláló nulláról! Ha a lépésszámláló páros, akkor az ’A’ játékos, egyébként a ’B’ játékos lép.
  • Készítsük elő a játékmenet tárolására alkalmas adatszerkezetet, szöveget, listát!
  • Kezdetben kínáljuk fel a teljes elemlistát úgy, hogy mindig egy és csak egy legyen belőle kiválasztható!
  • A kiválasztást követően tároljuk el a játékmenetben az elemet, töröljük ezt az elemlistából, majd kínáljuk fel azoknak az elemeknek a listáját, amelyek kezdőbetűje megegyezik az előzőleg kiválasztott elem utolsó betűjével és növeljük meg a lépésszámlálót!
  • Amíg a felkínálható elemek listája nem üres, addig az előző lépést ismételjük meg!
  • A játék végén az nyert, aki a játékmenet utolsó elemét választotta ki. Írjuk ki a nevét és a lépésszámot!

A grafikus felületű megvalósítás képernyőképe rövid játékmenettel

Ötletek a megvalósításra és a továbbfejlesztésre

  • A program Java nyelven konzolos menükezeléssel, asztali alkalmazásként swing-esen többféle GUI komponens használatával és eseménykezeléssel, böngészőben futó JSP webalkalmazásként többféle űrlapmezővel, illetve HTML+CSS+JavaScript alapon is implementálható.
  • A kémiai elemek listája lecserélhető az angol nevekre. Ekkor figyeljünk arra, hogy a kis- és nagybetűket ne különböztessük meg az utolsó-első betű párosítása során.
  • Lehet a játék bármikor megszakítható, illetve a vége után újrakezdhető.
  • A program mérhetné a játék során az eltelt időt.
  • A program lehetne peer-to-peer vagy szerver-kliens elosztott és megvalósíthatna hálózatos kommunikációt.
  • A program mobil alkalmazásként is implementálható.

A bejegyzéshez tartozó teljes forráskódot – többféle változatban is – ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Többféleképpen is hozzájuthatunk az adatokhoz attól függően, hogy milyen előismeretekkel rendelkezünk a különböző tanfolyamainkon:

  • A Java SE szoftverfejlesztő tanfolyamon dolgozhatunk szövegtömbbel, generikus kollekcióval (listával/halmazzal), konzolos és swing-es változatot is készíthetünk. Ehhez a feladathoz objektumorientált alapok mindenképpen szükségesek. Kézzel előállított szövegfájlból olvasva (mentve a Wikipédia oldaláról a táblázatot) hozzájuthatunk a kémiai elemek nevéhez, amihez kivételkezelés is szükséges.
  • A Java EE szoftverfejlesztő tanfolyamon megvalósítható, hogy a program kivételkezeléssel hálózati kapcsolatot épít, majd közvetlenül olvassa és/vagy menti a Wikipédia HTML tartalmából a kémiai elemek nevét szövegfájlba vagy generikus kollekcióba, amivel a feladat visszavezethető az SE szemléletű megközelítésre. Böngészőben futó JSP és/vagy Servlet technológiára építő webalkalmazásként is megvalósítható a feladat.

KSH táblázatból dolgozunk

KSH-logo

KSH-logoA Központi Statisztikai Hivatal honlapján elérhető STADAT táblákból könnyen kinyerhetjük a nekünk szükséges adatokat. A témastruktúrába sorolt online és XLS exportként is böngészhető táblázatokban megtalálhatjuk logikusan csoportosítva összesítve az adatokat régiónként (megyénként), évenként, százalékosan. Az XLS fájlformátum Java nyelven a JExcel API-val hatékonyan feldolgozható. Lássunk erre egy példát!

Feladat

A KSH 2.1.2.35. táblázatából gyűjtsük ki a 19 magyar megyére + Budapestre vonatkozóan a gazdaságilag aktívak létszámát és az első évet alapnak tekintve adjuk meg évenként a változást százalékosan!

Tervezés

A KSH témastruktúrában a táblázat elérési útja:

  • 2. Társadalom,
  • 2.1. Munkaerőpiac,
  • 2.1.2. A munkaerőpiac alakulása Magyarországon (1998–2018) -> Területi adatok,
  • 2.1.2.35. A 15–64 éves népesség gazdasági aktivitása megyénként és régiónként (1998–2018)

Online böngészhető táblázat:
https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/mpal2_01_02_35.html.

Letölthető táblázat (XLS formátumban): https://www.ksh.hu/docs/hun/xstadat/xstadat_hosszu/xls/h2_1_2_35.xls.

A táblázat A oszlopában szerepelnek a régiók, megyék, időszakok (vegyesen, szövegként) és a D oszlopában a gazdaságilag aktívak (ezer fő, valós számként). A fejlécet nem szabad feldolgozni. 1998-tól 2018-ig 546 sorból áll az adatsor. A csoportosítás 26 régiót és megyét tartalmaz, amiből a 6 régiót (például: Közép-Dunántúl) ki kell hagyni.

A megyékre vonatkozóan 440 sort kell feldolgozni. Ebből az első sor a megye (vagy Budapest) neve, a többi (2019-ben 21 db) sorban találhatók az adatok (időszak). Olyan algoritmusban érdemes gondolkodni, ami a jövőben is működik. Ha csoportváltást alkalmazunk, akkor nem számít, hogy megyénként minden évben egy sornyival több adat lesz majd. A KSH táblázatok szerkezete nagyon ritkán változik, így bátran írható rájuk testre szabott forráskód (ezeket nem kell évente frissíteni).

Az évenkénti változást százalékosan nem tartalmazza a táblázat, ezt nekünk kell kiszámítani. A valós számok formázását érdemes egységesíteni, például a gazdaságilag aktívak létszámát 3 tizedesre, a változást 2 tizedesre kerekítve.

A belső adatábrázolást érdemes átgondolni. Hasznos, ha az időszakhoz tartozó három összetartozó adatot egyetlen Data POJO-ba fogjuk össze ( String period, double active és double change). Ezeket generikus listába szervezve ( ArrayList<Data> list) könnyen hozzájuk rendelhető a megye ( String county) és ezek együtt alkotják a Region POJO-t. A Region és Data kapcsolati fokszáma: 1:N. 2019-ben N=21 .

Részlet a megoldásból

A JExcel API használatához a Java projekthez hozzá kell adni a jxl.jar fájlt. A XLS fájl olvasható közvetlenül a webről is, de egyszerűbb helyi fájlrendszerbe mentett változatból dolgozni ( ./files/h2_1_2_35.xls). A megyék nevében található ékezetes karakterek miatt ügyelni kell a megfelelő karakterkódolásra ( Cp1252). A munkafüzet azonosítását követően hivatkozni kell a feldolgozandó munkalapra ( 2.1.2.35.). Az adatfeldolgozás során kihagyott régiókat (kivételeket) érdemes listába gyűjteni ( skipRegionList). A csoportváltást a két egymásba ágyazott ciklus valósítja meg. Ügyelni kell az adatok formátumának ellenőrzésére.

Eredmények

Például Somogy megyére az alábbi adatokat kapjuk eredményként (XLS formátumban, Excel-be betöltve, tipikus háttérszín kiemeléssel: szélsőértékek a C oszlopban, negatív értékek a D oszlopban):

KSH-result

További programozható feladatok

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik (ha az XLS fájlt a helyi fájlrendszerből érjük el), és a Java EE szoftverfejlesztő tanfolyam tematikájához kapcsolódik (ha az XLS fájl tartalmát közvetlenül a webről olvassuk).