Naprendszer szimuláció – megvalósítás Java nyelven

Naprendszer szimulációt terveztünk és valósítottunk meg Java nyelven, amit három részből álló blog bejegyzés sorozatban mutatunk be (ez a 3. rész):

A Naprendszer szimuláció megvalósítása Java nyelven

Fejlesztőeszközként a Java Swinges projekthez a JDK+JRE aktuális verziót támogató NetBeans IDE-t használtuk. Hibakeresés során, a modell adatainak ellenőrzését és a működés helyességének egyszerű tesztelését, debuggolást konzolra történő szöveges kiírással oldottuk meg. A megvalósítás során az előre megtervezett osztálydiagramok alapján készült el Java nyelven a forráskód. Az MVC modell szerint elkülönített programrészek külön csomagokba kerültek, ezzel is kiemelve a funkciók szerinti szétválasztást – eleget téve a terv követelményeinek.

Részlet a Java forráskódból

Megmutatjuk a Java forráskódnak azt a részét, ami megvalósítja az elméleti háttérnél ismertetett transzformációs mátrix alkalmazását X tengely körüli elforgatásra, a nézőponttól való távolság függvényében az égitest látható méretének kiszámítását, valamint a 3D→2D leképezést.

A teljes és megjegyzésekkel ellátott forráskód ILIAS e-learning tananyagban hozzáférhető, letölthető, tesztelhető tanfolyamaink résztvevői számára.

Az elkészült Java Swinges alkalmazás felhasználói felülete

Tapasztalatok

  • A Java nyelv erősen típusos, így a kötelező és sok lebegőpontos/egész átalakítás miatt észrevehető, hogy a legkisebb égitest (Hold) kissé ugrál.
  • Az OO szempontból szép Java megvalósítás könnyen módosítható és bővíthető, a funkciók jól csoportosítottak, a felelősségi kör egyértelműen meghatározott.
  • A projekt megtervezéséhez és elkészítéséhez magasabb szintű absztrakciós készség szükséges.
  • A példaprogram alkalmas a különböző szakterületek, témakörök (matematika – lineáris algebra, fizika, számítógépes grafika, virtuális valóság modellezése) közötti kapcsolatok felismertetésére, megerősítésére, a (legalább részben) egymásra épülések felderítésére.
  • A ter­v átgondolásával, implementálásával gyors, látványos eredmény érhető el, a sikerélmény hamar jelentkezik.

Továbbfejlesztési lehetőségek

  • Célszerű ötlet a hardveres gyorsítás és 3D megjelenítés megvalósítása.
  • Felkínálható lenne a felhasználó számára több paraméter módosítása.
  • Az égitestek lehetnének textúrázhatók is.
  • Az égitestek pozíciója kiinduló helyzetben lehetne valós.
  • A szimuláció szükség esetén lehetne elindítható, leállítható, újraindítható, gyorsítható, lassítható.
  • A terv könnyen implementálható lehet Java3D techno­lógia alkalmazásával, illetve DirectX és/vagy OpenGL támogatással is.
  • Az égitestek pozíciója és mozgása demonstrálhatna/modellezhetne nevezetes együttállást is, külön esettanulmányként.
  • A program paraméterezhető lehetne konfigurációs fájlból (amelynek formátuma tetszőleges: INI, XML).
  • Fejlettebb matematikai modell is alkalmazható lenne.

Forrás

  • Friedel, A.; Kaczur, S. (előadó: Friedel, A.): Naprendszer szimuláció a Virtuális valóság modellezése tantárgyban, Informatika Korszerű Technikái Konferencia, Dunaújváros, Dunaújvárosi Főiskola, 2012. november 16-17. (előadás hazai konferencián)
  • Friedel, A.; Kaczur, S.: Naprendszer szimuláció a Virtuális valóság modellezése tantárgyban, Cserny, L.; Hadaricsné Dudás, N.; Nagy, B. (szerk): Dunakavics Könyvek 2. – Az Informatika Korszerű Technikái, Dunaújvárosi Főiskola, Új Mandátum Könyvkiadó, 2014, ISBN 978 963 287 069 4, ISSN 2064-3837, p. 72-84 (magyar nyelvű szakcikk)

Naprendszer szimuláció – objektumorientált tervezés

Naprendszer szimulációt terveztünk és valósítottunk meg Java nyelven, amit három részből álló blog bejegyzés sorozatban mutatunk be (ez a 2. rész):

A Naprendszer szimuláció objektumorientált tervezése

A Naprendszer égitestjeinek ábrázolása a valódi világban előforduló méretük és távolságuk szerint történik azért, hogy a szimuláció stabil legyen. A példában a Nap és a három belső bolygó szerepel, valamint a Hold. Utóbbi igazolja, hogy nem csak Nap középpontú égitestekre működőképes a modell. A szimuláció diszkrét lépések véges sorozataként valósul meg, az egyes lépések között az égitestek a virtuális térben egyenes vonalú egyenletes mozgást végeznek. Olyan lépésközt kell választani, amely rövid idő alatt kellően nagy változást képes bemutatni, ilyen például az 1 számítási ciklus / 1 nap érték. 10 képkocka / másodperces megjelenítést feltételezve – melyet egy időzítő biztosít – egy virtuális év kb. 37 másodperc alatt telik el, vagyis a Föld ennyi idő alatt tesz meg egy teljes fordulatot a Nap körül. Az égitestek kezdő pozíciója fiktív, nem függ konkrét dátumtól, együttállástól, méretük a jobb láthatóság érdekében torzított.

A program indításakor a szimuláció automatikusan indul, és nincs lehetőség a leállításra. Az alkalmazás felületének tetején foglalnak helyet a kezelő nyomógombok, a többi részt a megjelenítés/transzformált modelltér tölti ki. Futás közben – egyszerű ese­mény­ke­zelést megvalósítva – lehet változtatni a méretarányt és a nézőpontot, így az ekliptika síkját felülről és elbillentve is ábrázolhatjuk.

Kivételkezelés nem szükséges a programhoz, mert ez egy önálló demonstrációs eszköz, nem épül rá több elem, nem érhetőek el a szolgáltatásai külső programok számára.

Meghatározott cél és a szempontok: a Java projektben a csomagokat az MVC szerint hozzuk létre, a funkciókat logikusan osszuk szét, csoportosítsuk, tartsuk be az objektumorientált szemléletmód elveit, használjunk interfészt, biztosítsuk az egység­bezárást, legyen öröklődés, alkalmazzuk a polimorfizmust, legyen szép és elegáns megoldás, legyen a jelölésrendszer UML osztálydiagram. Mindez grafikus asztali Java alkalmazásként valósuljon meg.

A modell csomag (M – Model)

A modellhez 1 interfész és 5 osztály tartozik:


Az AdatInterfesz tárolja a modell számításhoz és megjelenítéshez tartozó konstansait (ezek a szimuláció paraméterei), és metódusfejet nem tartalmaz. A Pont2D osztály egy kétdimenziós pont sémája, valós x és y koordinátapárral, eltol() és túlterhelt tavolsag() metódusokkal. Ennek leszármazottja a Pont3D osztály, amely mindezt három dimenzióban biztosítja, valamint pozícióként és sebességvektorként is használható. Az Egitest osztályból létrehozott objektumnak van mérete, pozíciója, sebessége, színe és tömege. Az interfészt implementálja az Adattar osztály, amelynek egitestLista nevű generikus listája elérhetővé és egységesen kezel­hetővé teszi a tervben felsorolt 5 égitestet. A ZIndex osztályú objektumok az égitestek kirajzolásakor szükséges mélységpufferbeli adatot képesek kezelni.

A nézet csomag (V – View)

A nézet 2 osztályból áll:


Az Ablak osztály egy javax.swing.JFrame le­szár­mazott, az alkalmazás teljes grafikus felületét biztosítja, valamint előkészíti az eseménykezelést. Tartalompanelje négy vezérlő nyomógombot tartalmaz és rajta található a rajzpanel objektum, a vaszon. A RajzPanel osztály egy javax.swing.JPanel leszármazott, amely kapcsolatban áll az adattárral, és kezeli a mélységpuffert. Ez felel a szimulált 3D térben lévő objektumok 2D-beli leképezéséért, figyelembe véve a nézőpont elmozdulását is. A rajzolást a felüldefiniált (öröklődés) paintComponent() metódus végzi el.

Az Ablak osztályú objektum elsődleges szerepet tölt be a megjelenítésben, keretbe foglalva a látható komponenseket, vagyis a kezelő nyomógombokat és a modellteret. Az objektum megvalósít egy ActionListener eseménykezelőt, így a program reagálni tud a felhasználó által kiváltott eseményekre. Az ablakobjektum nagyítás és forgatás üzenetek küldésével saját vásznát – és csak azt – frissíti.

A vezérlő csomag (C – Controller)

A vezérlőt 2 osztály valósítja meg:

A Main osztály összefogja a projektet, ez a végrehajtás belépési pontja. Szükség szerint átadja az MVC szerinti objektumok referenciáit egymásnak, ezzel biztosítva a kommunikációt közöttük, valamint el is indítja a szimulációt. A Logika osztály képes az égitestek gyorsulásának és vonzásának kiszámítására, az égitestek mozgatására, továbbá a megjelenítésért felelős komponenst megfelelő időközönként értesíti a képernyő frissítésének szükségességéről, ami az alapbeállítás szerint 30 frissítés másod­percenként.

Naprendszer szimuláció – elméleti háttér

Naprendszer szimulációt terveztünk és valósítottunk meg Java nyelven, amit három részből álló blog bejegyzés sorozatban mutatunk be (ez az 1. rész):

A Naprendszer szimuláció elméleti háttere

A Naprendszer szimulációhoz elengedhetetlen, hogy ismerjük a homogén koordinátákat, az elemi műveletek egységes megvalósításához szükséges transzformációs mátrixokat, a tömegvonzás elvét és az implementációhoz szükséges MVC modellt.

Homogén koordináták

Számítógépes algoritmusokkal egyszerű a térbeli transzformáció megvalósítása, ha homogén koordinátákat használunk. Segítségükkel az affin transzformációk egységesen kezelhetők. A cél egy egységes matematikai formalizmus alkalmazása. A pontok az égitestek középpontjait fogják jelölni. Legyen a P pont 3D-beli koordinátái: P=(x, y, z). Szükséges egy konstans érték. Ha w≠0, akkor a P pont koordinátái: P=(w·x, w·y, w·z, w). Ha w=1, akkor a P pont normalizált homogén koordinátái: P=(x, y, z, 1). A pontnégyes kijelölése kölcsönösen egyértelmű.

Transzformációk

Koordináta transzformáció során az ábrázolandó grafikus objektum pontjaihoz (tárgypontokhoz) új koordináta-rendszert rendelünk hozzá. Az objektum nem változik (nem torzul, nem változtatja meg az alakját), csupán a nézőpont változik meg. Például: a koordináta-rendszer eltolása, elforgatása, a koordinátatengelyek felcserélése, tükrözése, és a léptékváltás (nagyítás, kicsinyítés, összenyomás, széthúzás), elforgatjuk az ekliptika síkját a szimulált Naprendszerben.

Pont transzformáció esetén a tárgypontokhoz hozzárendeljük azok egy adott szempont szerinti hasonmását. Például: 3D-s tárgyak leképezése 2D-s képre, objektumok eltolása, forgatása, mozgatása, égitestek mozgatása tömegvonzás alapján. Affin transzformációk (egybevágósági és hasonlósági transzformációk) alkalmazása esetén pont képe pont, szakasz képe szakasz, felület képe felület, valamint metsző térelemek eredeti metszésvonala megegyezik azok leképezett metszésvonalával.

A számítógépes grafika területén az affin transzformációk általános alakja (mátrixosan):

A pont a B=(bx, by, bz) vektorral eltolható. A pont – a T=(t11, t12, …, t33) mátrixot használva – adott szöggel elforgatható, skálázható, tükrözhető. A számítógépes grafikában ezt a transzformációs mátrixot a homogén koordinátákkal alkalmazva, az összes geometriai transzformáció hatékonyan megvalósítható, visszavezethető mátrixok szorzására. Mindezt saját magunk is implementálhatjuk, de része a DirectX és OpenGL rendering pipeline-jának is.

Más módon is lehetne: egyenes és ehhez tartozó szög párossal is dolgozhatnánk.

A tömegvonzás elve

A tömegvonzás bármely két égitest között meghatározott, függ a gravitációs állandótól és az égitestek tömegétől egyenes arányban, az égitestek (tömeg)középpontjainak távolságától fordított arányban. Ez a Newton szerinti értelmezés, amelynek képlete:

A hatás-ellenhatás törvénye miatt a vonzás – egymás felé való gyorsulás – kölcsönös, a gyorsulás az égitestek tömegével fordítottan arányos, sosem nulla. A Naprendszerben a bolygók a Nap körül keringenek, és a bolygóknak lehetnek holdjaik. Egységesen kezelve: égitestek.

A tömegvonzásnak más elméleti megközelítései is vannak: Einstein gödör-modellje, Kepler törvényei, illetve differenciál-egyenletrendszer, integrálszámítás is használható a közelítő képlet helyett (csak ideális modell esetén pontszerű az égitest és gömbszimmetrikus azok tömegeloszlása), illetve ismeretes többféle értelmezés a rendszer/modell stabilitására: Lagrange pontok, Lyapunov stabilitás.

Az MVC modell

A klasszikus megközelítés szerint a szoftveres alkalmazások három, egymástól jól elkülöníthető szereppel rendelkező egységből állnak: modell (model), nézet (view), vezérlő (controller). A Java nyelv Swing komponensei az MVC architektúra szerint működnek.

A vezérlő reagál az érkező eseményre, hozzáfér a modell adatszerkezeteihez, azaz igénybe veszi a modell szolgáltatásait, valamint frissítheti a nézetet. A nézet a vezérlő frissítési kérésére a közvetlenül megkapott adatok alapján, vagy a modelltől elkért adatok alapján frissíti saját magát. A vezérlő határozza meg az alkalmazás, komponens, program működését. Egy modellt több nézet is használhat. A modell közvetlenül is üzenheti a nézetnek, hogy megváltozott. A nézet adja a látványt, amelyet angolul skin vagy „look and feel”-nek neveznek.

Egy matematika érettségi feladat megoldása programozással 2022

érettségi logó

érettségi logóA 2022-es középszintű matematika érettségi feladatsor eléggé egyszerű volt, de azért a 6. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá a megszámolás programozási tétel. Többféle megoldás/megközelítés (iteratív és rekurzív) is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

6. feladat

Egy feleletválasztós teszt 5 kérdésből áll, minden kérdésnél négy válaszlehetőség van. Hányféleképpen lehet az 5 kérdésből álló tesztet kitölteni, ha minden kérdésnél egy választ kell megjelölni?

1. megoldás

Rögtön tudjuk, hogy ez kombinatorika, n elem k-ad osztályú ismétléses variációja, amelynek paraméterei: n=4, k=5. A hatványozás azonosságainak ismeretében fejből is tudjuk a megoldást: 45=210=1024. A Java forráskód elvégzi a hatványozást. A Math.pow() függvény általánosabb, mint amire most szükségünk van. Fogad double valós paramétereket és double típusú értékkel tér vissza. Ezért hasznos az (int) explicit típuskényszerítés.

Másképpen: négy elemű halmazból öt elemet kiválasztunk és ezeket sorba rendezzük (permutáljuk) és egy elemet egy csoportban akár ötször is felhasználhatunk. Számít a sorrend. A lehetséges variációk száma: 1024.

2. megoldás

Ha hasznos lenne egy általános metódus az ismétléses variáció kiszámítására, akkor ez egy tipikus megoldás lehet erre. Kiegészítendő még a két paraméter előjelének ellenőrzésével.

3. megoldás

Ha a megértést segíti, akkor a teljes leszámolás (brute force) módszerével, egymásba ágyazott ciklusokkal könnyen kiírathatjuk a konzolra az 1024 db különböző válaszlehetőséget. A k-val kezdődő sorszámozott ciklusváltozók jelölik az öt kérdést, azon belül az 'a'-tól 'd'-ig karakterek adják a válaszlehetőségeket. Eredményül ezt kapjuk (görgethető):

4. megoldás

Ha csak a végeredmény szükséges, akkor ez az iteratív megoldás a megszámolás programozási tétellel előállítja azt.

5. megoldás

Ez egy rekurzív megoldás. Ciklus helyett a metódus önmagát hívja meg, így valósul meg az ismételt utasításvégrehajtás. A válaszlehetőségek összefűzésével (konkatenáció) előállított válasz akkor megfelelő, ha annak hossza öt. Ez esetben kiíródik a válaszlehetőség a konzolra (mintegy mellékhatásként). Ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

6. megoldás

Szintén, ha csak a végeredmény szükséges, akkor ez a mellékhatással rendelkező rekurzív metódus előállítja azt. A mellékhatás most az, hogy a metódus eljárás és nem függvény és szükséges hozzá a db osztályváltozó (ami a metódushoz képest globálisnak is tekinthető).

7. megoldás

Ez a megoldás a válaszlehetőségeket megfelelteti n alapú számrendszerben k számjegyből álló számoknak. A kétdimenziós tömbben számokat tárol, így:

  • 1,…,1,1 → 0…0000
  • 1,…,1,2 → 0…0001
  • 1,…,1,n → 0…001(n1)
  • 1,…,2,n → 0…001(n1)
  • n,…,n,n → (n1)...(n1)

Végül a kiíró ciklus ezeket a számokat karakterekké alakítja ( 'a' ASCII kódja 97) és fordított sorrendben írja ki, hogy ugyanazt az eredményt kapjuk, mint a 3. megoldásnál.

Továbbfejlesztési lehetőségek

  • A 2. megoldáshoz: teszteljük le a lehetséges túlcsordulást és az int típus helyett szükség esetén használjunk long típust!
  • A 3. megoldáshoz: építsünk kétdimenziós tömb adatszerkezetet, amiből később az i-edik válaszlehetőség megadható!
  • Előzőhöz: állítsuk elő lexikografikus sorrendben az i-edik válaszlehetőséget adatszerkezet felépítése nélkül!
  • A 6. megoldáshoz: valósítsuk meg a rekurzív gondolatmenetet mellékhatás nélkül!
  • Teszteljünk: mennyi idő alatt hajtódik végre a 4. és a 6. megoldás? Mekkora paraméterekkel érzékelhető, hogy a rekurzió jóval lassabban fut?
  • A 7. megoldáshoz: cseréljük le az egésztömb adatszerkezetet karaktertömbre!

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, valamint 21-24. óra: Objektumorientált programozás 1. rész alkalmaihoz kötődik.

Ratkó István emlékest 2022

A Gábor Dénes Főiskolán működő Ratkó István matematika interdiszciplináris alkalmazásai Műhely 2022. március 25-én 10. alkalommal rendezte meg a Ratkó István emlékestet. Ezen már többször is részt vettem előadóként és a hallgatóság tagjaként is. 2014-ben Prímszámkereső algoritmusok hatékonysága címmel, 2015-ben A bűvös négyzet története és előállítása (oktatóprogram) címmel tartottam előadást. A jubileumi emlékesten pedig „Töltsünk ki az ötöslottón 100 szelvényt úgy, hogy valamelyik szelvénnyel biztosan legyen két találatunk!” – a feladat megoldásához vezető út címmel tartottam előadást.

A blog bejegyzésben röviden összefoglalom az előadást:

  • Személyes élmények Ratkó tanár úrhoz kötődően
  • Ötöslottó: diszkrét matematika, elemi kombinatorikai feladat, lehetséges különböző szelvények száma, öttalálatos valószínűsége, szemléltetés
  • Véletlenszámok előállítása: valódi és ál (pszeudo) véletlenszámok, hardveres és szoftveres megoldások áttekintése, LCG
  • Egyetlen véletlenszám előállítása Java nyelven: procedurális, OO, szálbiztos megoldások
  • Egyetlen lottószelvény előállítása Java nyelven: adatszerkezet nélkül, logikai tömb (demóprogram), számtömb, szöveg (McMillan egyenlőtlenség, optimális kód, Huffman kód, prefixmentes kódolás, Shannon-Fano kód, hibajelző és hibajavító kód, Hamming távolság, Reed-Solomon kód, algebra: véges testek megkonstruálása), generikus lista (érték), generikus lista (keverés), generikus lista (elfogyasztás), generikus halmaz, funkcionális programozás / algoritmusok és adatszerkezetek rövid elemzése, összehasonlítása, kompromisszumok
  • Találatok száma: matematika vs. programozási tételek, metszet tömbbel és generikus listával, Stream API-val, lambda kifejezéssel
  • Különböző lottószelvények előállítása: összes eset, brute force, mesterséges intelligencia, problématér|állapottér, kombinatorikai robbanás kontrollálása
    (szemléletváltás: az eddigi 1-90 intervallumból kiválasztott 5 különböző szám egy lottószelvényt jelentett, mostantól az 1-43949268 intervallumból kiválasztott különböző számok különböző lottószelvényeket jelentenek)

Eddig minden feldolgozható a középiskolás matematikai eszköztárral és kezdő Java objektumorientált programozás által biztosított mozgástérben. A továbbiakhoz szintet kell lépni.

A konkrét feladatspecifikáció:

„Töltsünk ki az ötöslottón 100 szelvényt úgy, hogy valamelyik szelvénnyel biztosan legyen két találatunk!” (Segítség: töltsünk ki 30 szelvényt úgy, hogy az 1-25 közötti számpárt lefedjék; 21 szelvényt úgy, hogy a 26-46 közötti összes számpárt lefedjék; 21 szelvényt úgy, hogy a 47-67 közötti összes számpárt lefedjék és 28 szelvényt úgy, hogy a 68-90 közötti összes számpárt lefedjék. Miért lesz így legalább két találatunk?)

A szintlépéshez hasznos ismerni két tankönyvet (Szilasi Zoltán: Bevezetés a véges geometriába, 2015; Reiman István: A geometria és határterületei, 2001) és egy tudományos cikket (Z. Füredi, G. J. Székely, Z. Zubor: On the Lottery Problem, 1995). További szükséges ismeretek (geometria, algebra, elemi matematika, kombinatorika): projektív geometria, véges projektív sík, Kirkman iskoláslány problémája, Fano-sík (mint algebrai és geometriai leképezés), Steiner-rendszer (ponthalmaz, amely elemszáma 6k+1 alakú prím), néhány konstruktív jellegű bizonyítás, skatulya-elv.

Az előadás a feladat megoldásához vezető útról szólt. Az eredmény előtti utolsó előtti lépés ezt jelenti (Java program konzolra kiírt szövege):

Végül ismertettem néhány lehetőséget az algoritmus vizsgálatára és az implementált Java forráskód tesztelésére.

Köszönöm Kupcsikné Fitus Ilona kolléganőnek, hogy a jubileumi Ratkó István emlékest szervezőjeként előadónak felkért. Örömmel csatlakoztam újra. A prezentációmat a résztvevőkkel megosztottam. Köszönöm az érdeklődő kollégáknak és hallgatóknak a részvételt és a pozitív visszajelzéseket. Az emlékestek programjai elérhetők. Ajánlom lottószelvény címkénket is, mert a téma igazi örökzöld.