Barátságos számok

Barátságos számok

Barátságos számokAzokat a számpárokat, amelyekre igaz, hogy az egyik szám önmagánál kisebb osztóinak összege megegyezik a másik számmal és fordítva, külön-külön barátságos számoknak, együtt barátságos számpárnak hívjuk.

Másképpen: legyen d(n) az n természetes szám önmagánál kisebb osztóinak összege. Ha d(a)=b és d(b)=a, ahol ab, akkor a és b barátságos számpár.

Például: (220; 284), hiszen a 220 önmagánál kisebb osztói: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110 és ezek összege 284, illetve 284 önmagánál kisebb osztói: 1, 2, 4, 71, 142 és ezek összege 220.

Írjunk Java programot, amely kiírja az 1-10000 zárt intervallumban található barátságos számpárokat!

1. megoldás

A baratsagosSzamparok1() eljárás ciklusai a brute force módszer szerint behelyesítik az összes lehetséges számot. Minimális lépésszám csökkentésre adódik lehetőség, hiszen a belső ciklus j változója i+1-ről indítható (így a megtalált számpárok nem íródnak ki fordítva is, mert teljesül, hogy i<j).

Az osztokOsszege1(n) függvény is minden lehetséges osztót figyelembe vesz 1-től n-1-ig.

2. megoldás

Kisebb módosításokkal a lépésszám csökkenthető. A baratsagosSzamparok2() eljárás külső ciklusánál figyelembe vettem, hogy a legkisebb barátságos számpár kisebb tagja nagyobb 200-nál. Mivel a barátságos számpárok tagjainak paritása mindig megegyezik (azaz mindkettő páros vagy mindkettő páratlan), így a belső ciklus j változója indítható i+2-ről és léptethető kettesével ( j+=2), és továbbra is teljesül, hogy i<j.

Az osztokOsszege2(n) függvényt is módosítottam. Mivel az 1 minden számnak osztója, illetve a 2 minden páros számnak osztója, így s lehet 3 vagy 1 és a ciklus indítható 3-ról. A páros számok esetén a számnál kisebb legnagyobb osztó maximum n/2 lehet, illetve ugyanez páratlan számok esetén n/3 lehet. Ezekre figyelve a max változó adja a ciklus léptetésének felső határát. Az i változó léptetésénél figyelembe vettem, hogy páratlan számnak csak páratlan osztói lehetnek ( i=3-mal szinkronban).

3. megoldás

Az eddigi két egymásba ágyazott ciklus helyett átszervezhető a baratsagosSzamparok3() eljárás. A j>i && osztokOsszege2(j)==i feltétel kiértékelése így sokkal hatékonyabb.

Vajon milyen nagyságrendű különbségek adódnak, ha összehasonlítjuk a három megoldás futási idejét?

Az 1. megoldás futási ideje 1104156 ms, a 2. megoldásé 257055 ms, a 3. megoldásé 121 ms. A konkrét értékek helyett a nagyságrendet megfigyelve a különbség nagyon látványos.

Mindhárom megoldás helyes és megkapjuk az intervallumban található öt barátságos számpárt: (220; 284), (1184; 1210), (2620; 2924), (5020; 5564), (6232; 6368).

A bejegyzéshez tartozó teljes – időméréssel kiegészített – forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Források:

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomhoz kötődik.

Programozási alapok K-MOOC online kurzus az Óbudai Egyetemen

Az Óbudai Egyetemen 2014-ben megalakult a KÁRPÁT-MEDENCEI ONLINE OKTATÁSI CENTRUM (K-MOOC), amelynek egyik fő célja, hogy biztosítson kredittel elismert online oktatási formát a Kárpát-medencei, részben, vagy egészben magyar tannyelvű képzést folytató felsőoktatási intézmények hallgatói számára, illetve egy oktatási formát az élethosszig tartó tanulás megvalósítására. A pályázat célja, hogy a K-MOOC hálózatához csatlakozott felsőoktatási intézmények bekapcsolódjanak a kurzuskészítés és meghirdetés folyamatába. Ezzel gazdagítják a kurzusok tárházát és az elérhető tudományterületeket is. Lehetőséget teremtenek az oktatók számára a meglévő kredit értékű tárgyaik megújítására. A korszerű tananyagok kifejlesztése hozzájárul a képzés színvonalának növeléséhez.

2016 tavaszán az ÓE meghirdette Online kurzusok fejlesztésére magyarországi és határon túli magyar oktatási nyelvű felsőoktatási intézmények oktatói számára című pályázatát.

A pályázat keretében fejlesztett tananyagokaz a K-MOOC keretében publikálták. A tananyagok kidolgozásánál a pályázónak alkalmazói szinten ismernie kellett a kurzust működtető keretrendszert. A Moodle esetében kötelező volt figyelembe venni a Moodle szabványait. A tananyagfejlesztés tevékenységnek minden esetben online elérhető, oktatásban alkalmazható, tantárgykövetelményhez igazodó végtermékkel kell zárulnia. A pályázathoz 4 félévre szóló fenntartási kötelezettség is kötődött. A pályázónak vállalnia kellett, hogy a kurzust 4 oktatási félévig menedzseli a K-MOOC keretében, mialatt a kifejlesztett tananyagot aktualizálni kellett. A kurzus moduljainak minimális száma meghatározott volt, ahogyan egy-egy modul kötelező elemei is: cél, követelmény, időszükséglet, tartalom, önellenőrzés, ellenőrzés.

A Programozási alapok című tananyagommal pályáztam és nyertem.

Az online kurzus célja volt, hogy megismertesse a programozás alapfogalmait, megismertesse az alapvető strukturált és objektumorientált programozási technikákat, megismertesse egy programozási nyelv (Java) és osztálykönyvtár filozófiáját, stabil eligazodást nyújtson különböző feladattípusok, sémák, módszerek, paradigmák és programozási tételek között, tervezési és programozási stílust alakítson ki.

Az online kurzus értékelése így zajlott. Gyakorlati jegyet kellett szerezni a szorgalmi időszakban. Mindig 4 db előre bejelentett számonkérés volt, ebből 2 db elméleti teszt, amely 20-20%-ot jelentett és 2 db kódolási feladat, amely 30-30%-ot jelentett. A tesztkérdések témakörönként véletlenszerű kiválogatása 200-nál több kérdésből álló publikus tesztkérdés-gyűjteményen alapult. A elméleti részek előtt korlátlan számú anomin gyakorlási lehetőség volt adott és a számonkérő alkalmak során egy alkalommal időkorlátosan volt elérhető a teszt. A kódolási feladatok a tantárgyhoz tartozó példatár (200-nál több Java nyelvű forráskód) elemeihez hasonló feladatok voltak, időkorlátosan voltak elkészítendők. A feladatkiírások részletesen specifikáltak voltak, a megoldások konstruktív problémamegoldást igényeltek, értő szövegolvasási készséggel kellett rendelkezni, értelmesen gondolkodni kellett tudni, lépésekre, tanult alapelemekre kellett tudni bontani a tervezés során a feladatot, valamint a megszerzett tudást alkalmazni/átültetni/testre szabni/paraméterezni volt szükséges.

Az online kurzus tematikájának elemei – jelentősen kibővítve – belekerültek a Java SE szoftverfejlesztő tanfolyamunk tematikájába.

Az online kurzus a 2016/2017-es és a 2017/2018-as tanév őszi és tavaszi féléveiben is meghirdetésre került. A pályázathoz kötődő 4 féléves fenntartási kötelezettség a mai nappal lezárult. Sok-sok hallgató felvette a kurzust. Sokan lemorzsolódtak, de sokan teljesítették is. Mindegyik félév szorgalmi időszakában szinte állandó, aktív szakmai párbeszéd folyt az online kurzus fórumain, chat formájában. Döntően önszerveződő volt a kommunikáció, a témák orientálásán túl moderálásra nem volt szükség. Elenyésző volt a „nem találom, hová kell kattintani”, illetve a „lemaradtam a feladat leadási határidejéről, nem-e lehetne-e-e-e még beadni” jellegű üzenetek aránya.

Egy matematika érettségi feladat megoldása programozással 2018

érettségi logó

érettségi logóA 2018-as középszintű matematika érettségi feladatsor 10. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, kiválasztás. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

10. feladat

Adja meg az alábbi adathalmaz móduszát, mediánját és terjedelmét!
2; 6; 6; 6; 6; 6; 3; 3; 4; 4; 4; 5; 5; 5; 5

Tervezés

A Java 8 által biztosított újdonságok közül használunk néhányat. Célszerű konstans tömbben tárolni a megadott számsorozatot, ami könnyen konvertálható generikus listába. Alkalmazkodni kell ahhoz, hogy a lista indexelése 0-tól lista.size()-1 -ig értelmezhető. Hasznos, ha a konkrét feladatok helyett általános megoldásokban gondolkodunk és a feladatot 3 metódusra bontjuk, amelyek ellenőrzéseket is végeznek. Például extrém esetek:

  • ha a lista üres, akkor nincs módusz, medián, terjedelem,
  • ha a lista egyetlen elemből áll, akkor a módusz és a medián megegyezik az elemmel, a terjedelem pedig nulla,
  • ha leggyakrabban több különböző szám is előfordul, akkor a módusz ezek közül a (leg)kisebb számot adja vissza.

Elvárjuk, hogy probléma esetén a metódusok dobjanak kivételt. Lényeges, hogy a referencia szerinti paraméterátadás során megváltozna a listában az elemek sorrendje, mert a megoldás igényli az elemek rendezettségét, akkor készüljön másolat az adatszerkezetről, hogy egy-egy részfeladat megoldása nem járjon azzal a mellékhatással, hogy az eredeti adatszerkezetben megváltozik az elemek sorrendje. Felhasználjuk a primitív típusú változók és a csomagolóosztályok közötti konverziós lehetőségeket: autoboxing és unboxing.

Megoldás: módusz

A módusz a lista leggyakoribb értékét adja meg. Másképpen az az érték, amelyik az adatsorban a legtöbbször előfordul.

A modusz() metódus átveszi a szamLista-t és készít róla lista néven egy másolatot, majd utóbbit növekvő sorrendbe rendezi. A másolat a Stream API-val készül el. Ezután csoportváltás algoritmussal feldolgozza a listát. Egy csoportba az azonos számok kerülnek és léptetés közben a belső ciklus megszámolja, hogy hány azonos szám alkotja az aktuális csoportot. Végül összehasonlítás következik a szélsőérték-kiválasztás ( aktSzamDb>maxAktSzamDb) beépítésével.

Megoldás: medián

A medián a lista középső értéke, amelynél az ennél kisebb és nagyobb elemek száma azonos. Rendezett adatsornál páratlan elemszám esetén a középső elem, illetve páros elemszám esetén a két középső elem átlaga.

A median() metódus átveszi a szamLista-t és készít róla lista néven egy másolatot, majd utóbbit növekvő sorrendbe rendezi. Ezután páros elemszám esetén visszaadja a két középső elem átlagát, illetve páratlan elemszám esetén a középső elemet. A metódusnak valós értéket ( double) kell visszaadnia, mert a két középső elem átlaga nem feltétlenül egész szám.

Megoldás: terjedelem

A terjedelem azt mutatja meg, hogy mekkora értékközben ingadoznak a lista elemei. A terjedelem az adatok változékonyságának „legdurvább” jellemzője, ami a szélsőértékek (minimum és maximum) közötti különbséget jelenti.

A terjedelem()  metódus átveszi a szamLista-t paraméterként és visszaadja a két szélsőérték különbségét, amelyek a Collections  osztály metódusaival könnyen előállítható. Persze egyetlen ciklussal is megkaphatnánk a két szélsőértéket.

Eredmény

A vezérlést az alábbi main()  metódus végzi el:

A konzolon az alábbi eredményt kapjuk:

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra: Objektumorientált programozás alkalmaihoz kötődik.

Koch-görbe rajzolása

Koch-görbe

Koch-görbeA Koch-görbe egyike a legrégebben ismert egyszerű fraktáloknak. Mint ilyen, önhasonlóan rekurzív. Az önhasonlóság azt jelenti, hogy az ábra tetszőleges részét felnagyítva mindig hasonló/ugyanolyan részek jelennek meg (a méretaránytól függetlenül). Az n=1 szinten a Koch-görbe kiindulópontja egy szabályos háromszög. A n+1-edik szinten az n-edik szinten található szakaszokat harmadoljuk, és a középső szakasz helyére egy harmad akkora háromszög két szárát illesztjük (az alapját kihagyjuk). Ezt rekurzívan folytatva kapjuk meg a Koch-görbét, másképpen Koch-féle hópelyhet.

Írtam egy egyszerű Java programot, amely n=1-től 9-ig paraméterezhetően kirajzolja a Koch-görbét egy grafikus felületre. Így működik:

Koch-görbe rajzolását bemutató program működése

A program elkészítéséhez néhány alapvető dolgot kell csupán tudni:

  • Vászontechnikával tudunk swing GUI felületre ( Graphics osztályú g objektum) rajzolni, ahol a koordináta-rendszer origója egy téglalap alakú terület bal felső csúcsa, X jobbra növekszik, Y pedig lefelé növekszik.
  • Kétféle szín áll rendelkezésre: háttérszín (most Color.WHITE), illetve rajzolószín (most Color.BLUE).
  • A rajzoláshoz grafikai primitíveket használhatunk, például pont, szakasz, téglalap, ellipszis. Szakaszt két végpontjának koordinátáival tudunk rajzolni a drawLine() metódussal.
  • Be kell állítani a vászon méreteit, azaz annak a komponensnek ( JPanel-ből öröklött KochPanel osztályú pnKoch objektum) a méreteit, amelyre ráfeszül a vászon.
  • Egy Slider osztályú sSzint nevű vezérlőobjektum ChangeListener figyelőinterfész stateChanged() eseménykezelő metódust implementáló objektumával paraméterezzük a rajzolást 1-től 9-ig.
  • A pnKoch objektumnak küldött repaint() üzenet/metódushívás meghívja a felüldefiniált paintComponent() metódust.

A szakasz négy darab harmad akkora szakaszra osztását a megfelelően paraméterezett rekurzív metódushívások oldják meg az alábbi lépéseket követve:

Koch-görbe rajzolásának fázisai

A rekurzív rajzolást a koch() metódus végzi el, ahol a fraktál szabályának megfelelően szakaszharmadolás és a szükséges pontok koordinátáinak (szakaszok végpontjai) kiszámítása történik:

A Koch-görbének van néhány érdekes tulajdonsága:

  • kerülete minden rekurzív lépésben minden határon túl növekszik, azaz a végtelenhez tart,
  • területe véges, hiszen minden rekurzív lépésben belefér a háromszög köré írható körbe,
  • dimenziója tört, ~ 1,261859.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomra építő 29-36. Grafikus felhasználói felület alkalomhoz kötődik.

Hány éves a kapitány?

Hány éves a kapitány?

Hány éves a kapitány?A problémamegoldó, logikus gondolkodásra nevelő képzések anyagában, illetve felvételi feladatsorokban is sokszor megtalálható – többféle változatban is.

Lássunk egyet a népszerű „Hány éves a kapitány?” típusú feladatok közül!

Három elefántot kell berakodnunk – szólt a hajóskapitány az első tiszthez.
És hány évesek ezek az elefántok? – kérdezte az első tiszt.
Mindegyik elmúlt már két éves és életkoraik szorzata 2450 – volt a válasz.
Hát életkoraik összege?
Azt fölösleges elárulnom, mert abból még nem tudnád megállapítani életkorukat – mondta a kapitány, majd hozzátette: Az egyikük idősebb nálam.
Akkor már tudom, hogy hány évesek az elefántok – mondta az első tiszt.

Feltéve, hogy tényleg tudta; … hány éves a kapitány?

Hogyan használhatnánk a feladat megoldásához programozáshoz kötődő ismereteinket?

Állítsunk elő olyan három szorzótényezőt, amelyek szorzata 2450 és egyben írassuk ki az összegüket is a konzolra!

Az i, j, k a három elefánt életkorát jelöli. Mivel mindegyik elmúlt két éves (és feltételezzük, hogy életkoraik egész számmal kifejezhetők), így i=3-ról indul. Az elefántok lehetnek egyidősek, ezért j=i-ről és k=j-ről indul. Nincs kizárt életkor, így a változók léptethetők egyesével. Az i, j, k monoton növekvő sorozatot alkot, ezért a kiírásban nem lesznek olyan sorok, amelyek csupán a szorzótényezők sorrendjében térnek el. Durva felső becslés a 100, hiszen az elefántok általában 60-70 évig élnek. Eredményül ezt kapjuk:

Az eredményből milyen következtetés(eke)t lehet levonni és mi a megoldás?

Az egyszer előforduló összegeket ki kell zárni, mert abból az első tiszt tudná az elefántok életkorát. Többször előforduló összegként marad a 64. Tehát az elefántok lehetnek 5, 10, 49, illetve 7, 7, 50 évesek. Mivel a kapitánynál idősebb az egyik elefánt, így a kapitány nem lehet 48 éves vagy fiatalabb (mert ekkor nem lenne egyértelmű az életkora), illetve nem lehet 50 éves vagy idősebb (mert ekkor nem lenne nála idősebb elefánt). Tehát a kapitány 49 éves.

(Másképpen megközelítve: a 2450 prímtényezős felbontása 2*52*72, amiből ugyanezekre a következtetésekre juthatunk.)

A feladat további változatai

  • Egy hajó hosszának, az árbóc magasságának, a kapitány kisfia életkorának és a kapitány életkorának szorzata 303335. Hány éves a kapitány?
  • A kapitány most kétszer annyi idős, mint a hajója volt akkor, amikor a kapitány kétszer volt annyi idős, mint most a hajója. A kapitány és a hajója összesen 70 éves. Hány éves a kapitány?
  • A Fekete Kalóz néven elhíresült kalózkapitány egyik sikeres kalandja után kiszámíttatta saját maga és kisfia életkorának, valamint hajója hosszának a szorzatát. Az eredmény 26 159 lett, amelyet mint szerencseszámot egy medálra vésetett és mindig a nyakában hordott. Hány éves a kapitány? (A hajóhosszt méterekben mérték, és a mérőszám egész szám!)
  • Te vezeted az utasszállító repülőt. Budapesten felszáll 11 utas. Bécsben leszáll 5 és felszáll 9. Párizsban 1 kivételével mindenki leszáll. Hány éves a kapitány?
  • A kapitány hajója most 40 éves. Kétszer annyi idős, mint amennyi a kapitány volt akkor, amikor a hajó annyi idős volt, mint a kapitány most. Hány éves a kapitány?

A bejegyzéshez tartozó forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek alkalmához kötődik.

Ajánlott irodalom

Aki kedvet kapott és beszerezne néhány könyvet – tele érdekes, gondolkodtató, kreatív, logikai feladatokkal – ajánlom az alábbiakat:

  • Katona, R. (szerk): Logikai egypercesek – az elme játékai, 2. kiadás, DFT-Hungária Könyvkiadó, Budapest, 2006, ISBN 963 9473 55 3
  • Róka, S.: 2×2 néha 5? – Paradoxonok, hibás bizonyítások, Tóth Könyvkereskedés és Kiadó Kft., Debrecen, 2008, ISBN 963 5965 24 3
  • Károlyi, Zs.: Csak logIQsan!, 2. javított kiadás, Typotex Elektronikus Kiadó Kft., Budapest, 2017, ISBN 963 279 693 5
  • Róka, S.: Egypercesek – Feladatok matematikából 14-18 éveseknek, Tóth Könyvkereskedés Kft., Debrecen, 1997
  • G. Nagy, L.: A világ legújabb logikai rejtvényei, Magyar Könyvklub, H. n., 2001, ISBN 963 547 512 8

Haladóknak ajánlom

  • Smullyan, R.: A hölgy vagy a tigris? – és egyéb logikai feladatok, 2. javított kiadás, Typotex Kiadó Kft., Budapest, 2002, ISBN 963 7546 63 4
  • Smullyan, R.: Mi a címe ennek a könyvnek? – Drakula rejtélye és más logikai feladványok, Typotex Elektronikus Kiadó Kft., Budapest, 1996, ISBN 963 7546 64 2
  • Shasha, D.: Dr. Ecco talányos kalandjai, Typotex Kiadó – SHL Hungary Kft., 2000, ISBN 963 9132 72 1