Multimédia az oktatásban 2021

NJSZT-MMO logó

NJSZT-MMO logóA Neumann János Számítógép-tudományi Társaság (NJSZT) „Multimédia az oktatásban” Szakosztály által – évente – szervezett XXVII. Multimédia az oktatásban című online nemzetközi konferencia került megrendezésre 2021. június 10-11-én.

A konferencia célja

A szakmai rendezvény célja, hogy elősegítse az oktatás, valamint a kutatás és fejlesztés különböző területein dolgozó, oktató hazai és külföldi szakemberek, PhD és felsőoktatási hallgatók kapcsolatfelvételét, tapasztalatok és jó gyakorlatok cseréjét, egyes képzési szakterületekhez kapcsolódó kreditek gyűjtését.

24 témakörben hirdették meg az előadóknak a jelentkezési lehetőséget, köztük néhány hozzánk kötődő

  • élethelyzethez igazított tanulás,
  • a multimédia alkalmazása a felsőoktatásban és a felnőttképzésben,
  • mLearning, eLearning és környezete,
  • a tanulási környezet technikai, technológiai változása,
  • felhőalapú szolgáltatások,
  • multimédia és a tudományos kutatás összefonódása,
  • multimédia-fejlesztések, eredmények, alkalmazások bemutatása.

A konferencia programja

Letölthető a konferencia programja. A konferencia a Dunaújvárosi Egyetemről élő közvetítésben zajlott a Pexip webkonferencia platformon. 2 nap alatt 13 szekcióban 65 előadás hangzott el 99 társszerzőtől. A rendezvényre 169 fő regisztrált és kb. 250-en követték az élő közvetítést 4 országból.

A plenáris előadások némileg számvetésre sarkalltak. Ez a 16. MMO-s anyagom 2009 óta. Ezek a szakmai előadások, magyar és/vagy angol nyelvű cikkek, poszterek megtalálhatók a publikációs listámban. Szakmai blogunkban több beszámoló is van, lásd MMO címke. Jövőre is szívesen csatlakozom a rendezvényhez. 2022-ben a Multimédia az oktatásban konferencia helyszíne a Horvátországban található Eszéki Egyetem lesz.

Részt vettem a konferencián

2021-ben előadást tartottam „Python tanfolyam tapasztalatai az átalakuló szoftverfejlesztő OKJ képzésben” címmel 20 percben, amely a konferencia „Multimédia-fejlesztések, eredmények, alkalmazások bemutatása” című szekciójába került. Előadásom prezentációját ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára. Az anyagból készült 5 oldalas szakmai cikket is készítettem, amely elérhető a konferencia kiadványban.

A cikk összefoglalója

A 2020/2021-es tanév átmenetet/átállást jelentett a szakképző intézményekben. Az informatika és távközlés ágazatban a korábbi szoftverfejlesztő képzést felváltotta a szoftverfejlesztő és –tesztelő képzés. A korábbi szabályozó és az új KKK, PTT dokumentumokat áttekintve több markáns különbség is adódik. Ezek egyike a Python programozási nyelv hangsúlyos beépülése. A kifutó kétéves OKJ képzést 2021-ben befejező diákok számára az it-tanfolyam.hu oktatói csapata kidolgozott és megvalósított egy Python tanfolyamot. Ők speciális célcsoport, mert már tanultak más programozási nyelveket, de Pythont még nem, vagy csak bevezetőként. Az előadás/cikk ismerteti a 2021. májustól elindult tanfolyam hátterét, tematikáját, szervezésének folyamatát, visszajelzéseit és összegzi a tapasztalatokat.

A cikk tartalomjegyzéke

  1. A szakképzés átalakulásának jogi háttere
  2. Tartalmi megújulás elemei
    1. Korábbi tartalom
    2. Új tartalom
    3. Releváns markáns különbségek
  3. Oktatók tapasztalatai
  4. A Python tanfolyam általános koncepciója
  5. A Python tanfolyam előkészítése, szervezése
  6. A tematika kiemelt elemei
    1. Adatszerkezetek
    2. Fájlok feldolgozása, adatbázis-kezelés
    3. Grafikus felhasználói felület – TKinter
    4. Webes alkalmazások – Flask és Django
    5. Mobil alkalmazások – Kivy
    6. IoT programozás – Raspberry Pi
    7. Mesterséges intelligencia
  7. Visszajelzések, tapasztalatok

Egy matematika érettségi feladat megoldása programozással 2021

érettségi logó

érettségi logóA 2021-es középszintű matematika érettségi feladatsor 12. feladata inspirált arra, hogy a programozás eszköztárával oldjuk meg ezt a feladatot. Szükséges hozzá néhány programozási tétel: sorozatszámítás, eldöntés, megszámolás, kiválogatás. Többféle megoldás/megközelítés is előkerül. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

A háromjegyű pozitív egész számok közül véletlenszerűen kiválasztunk egyet. Mennyi annak a valószínűsége, hogy a kiválasztott szám számjegyei különbözők? Megoldását részletezze!

1. megoldás

Az 1. megoldás egymásba ágyazott ciklusokkal behelyettesíti a szóba jöhető 900 db háromjegyű szám számjegyeit. A feltétel 648 esetben teljesül. Három számjegy azonosságát két részfeltétel és kapcsolatával eldönthetnénk a trichotómia miatt. Három számjegy különbözőségéhez három részfeltétel és kapcsolatából áll össze a feltétel. A válasz a kedvező és összes eset aránya/hányadosa, azaz 0,72. Másképpen 648 db szám a 900 db háromjegyű szám közül. A megoldás lépésszáma 900.

2. megoldás

Az egymásba ágyazott ciklusok lépésszáma összeszorzódik. A legbelső ciklus az előtte lévő feltételtől függően kevesebbszer is végrehajtódhat, hiszen a százas és tízes helyiértéken lévő számjegyek egyezése esetén nincs értelme az egyes helyiértéken lévő számjegy vizsgálatának. Így a 2. megoldás lépésszáma 810, azaz 10%-kal kevesebb. Ez a három részből álló feltétel két részre bontásával érhető el.

3. megoldás

A 3. megoldásban egyetlen ciklus végzi a vizsgálatot, a megszámolást. A ciklusváltozó már nem számjegy, hanem maga a háromjegyű szám, amiről döntést kell hozni: különbözik-e mindegyik számjegye vagy sem. Három beszédes nevű segédváltozó segít értelmezni a Java forráskódot. Ezek az egész osztás és a maradékos osztás műveleteivel állíthatók elő.

4. megoldás

A 4. megoldás logikai visszatérési értékű segédfüggvényt alkalmaz. Ez egy menekülőutas megoldás. Ha kizáró feltétel szerint már döntést tudunk hozni (például megegyezik a százas és a tízes helyiértéken lévő számjegy), akkor hamis értékkel menekülünk. Egyébként ág nélkül ezután következhet az egyes helyiértéken lévő számjegy összehasonlítása a többivel. A második feltétel az eddigiekhez képest tagadott, mert a menekülés a cél. Ha nincs menekülés amiatt, hogy volt két megegyező számjegy, akkor – a feltételek egymásra épülése miatt – nincs más hátra, mint igaz értékkel visszatérni (ami azt jelenti, hogy nem volt egyezés, azaz minden számjegy különbözött).

5. megoldás

Az 5. megoldás segédfüggvénye a háromjegyű szám esetén a különböző számjegyek darabszámával tér vissza. A röptében előállított százaz, tízes, egyes helyiértékeken lévő számjegyekből folyam adatszerkezet készül, aminek feldolgozását a Stream API műveletei (egyediesítő, megszámoló) végzik el. Ezt a vezérlő ciklusban hárommal összehasonlítva léptethető a megszámolást megvalósító változó, hiszen ha teljesül a feltétel, akkor eggyel több megfelelő szám van, mint előtte volt.

6. megoldás

Az 6. megoldás újra másképpen közelít. Ha könnyebbnek tűnik az a feltétel, hogy mikor nem jó (kedvezőtlen) nekünk egy szám, akkor beépíthetjük ezt is. Megszámoljuk azokat a háromjegyű számokat, amelyeknél egy vagy két számjegy azonos, majd ez kivonjuk a háromjegyű számok darabszámából.

7. megoldás

A 7. megoldás már mindent folyamokkal old meg, azok képességeire építve. Az összes háromjegyű számot előállítja, majd rajtuk kiválogatás programozási tételt (szűrőt) használ (az 5. megoldás segédfüggvényére építve), végül a folyamban maradó számokat megszámolja. Ez a megoldás már olyan haladóknak való, akik magabiztosan építik össze a Stream API műveleteit és a lambda kifejezéseket. Mindent egyben. Persze hol itt a hatékonyság? Hozzászólásokban megbeszélhetjük.

8. megoldás

A 8. megoldás szintén folyam adatszerkezettel működik, de négy egymást követő lépésben végez szűrést (kiválogatást). A 900 db háromjegyű számból indulunk ki. Az 1. szűrő kihagyja a 9 db AAA számot, amelyek számjegyei azonosak és így marad utána 891 db szám. A 2. szűrő után marad 810 db szám, mert kimarad az a 81 db AAB alakú szám (ahol a százas és tízes helyiértéken lévő számjegyek megegyeznek) az összesen 90 db-ból, ami még a folyamban maradt az 1. szűrő után. A 3. szűrő kihagy 81 db ABB alakú számot és meghagy 729 db számot. A 4. szűrő kihagy 80 db ABA alakú számot és meghagy 648 db ABC alakú számot.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek, 13-16. óra: Tömbök, valamint 21-24. óra: Objektumorientált programozás, 2. és 3. rész alkalmaihoz kötődik.

 

Keresztrejtvény készítése

Támogatjuk a keresztrejtvények készítését Java programmal. A program grafikus felülete eszköztárból és a keresztrejtvényből áll. Az elkészült programban 10×10-től 15×15-ig beállítható négyzetrács készíthető elő. A tiltott négyzetek száma 15-től 30-ig beállítható. Mivel a tiltott négyzetek helyzete véletlenszerű, így nem biztos, hogy az elsőre jó/szerencsés lesz, ezért újragenerálható a négyzetrács. A program a tipikus követelményeknek megfelelően sorfolytonosan sorszámozza a négyzetrács elemeit, ami alapján megadhatók hozzá a vízszintes és függőleges feladványok. A program az elfogadott négyzetrácsot többféle képformátumban is el tudja menteni.

Az elkészült Java program grafikus felülete

Objektumorientált tervezés

A keresztrejtvény ábrája egy négyzetrácsból áll, amelyben rejtvénymezők helyezkednek el. A rejtvénymezőnek megfelel egy örökítéssel felüldefiniált címkekomponens. A rejtvénymezőt körülveszi egy szegély/keret, tiltott vagy sem állapotától függően fekete vagy fehér a háttérszíne, valamint van a bal felső sarkához igazított kis méretű betűvel nem kötelezően megjeleníthető sorszáma. A tiltott és sorszám tulajdonságait kell tudni beállítani és megkérdezni. Ez a feladatban a RejtvenyMezo POJO. A négyzetrács sorai és oszlopai azonos méretűek (pixelre és darabszámra egyaránt).

Algoritmus a keresztrejtvény sorszámozására

A rejtvénymezők kétdimenziós négyzetes mátrixban/tömbben helyezkednek el. A sorszámozáshoz hasznos, ha a négyzetrácsot körbeveszi egy tiltott rejtvénymezőkből álló keret. Először a rács sorain és oszlopain végighaladó egymásba ágyazott ciklusok létrehozzák a POJO-kat úgy, hogy a négyzetrács keretén lévő rejtvénymezők tiltottak, a többi nem tiltott. Ezután véletlenszerűen ki kell választani – a még nem tiltottak közül – a szükséges mennyiségű tiltott rejtvénymezőt. Ezután sorfolytonosan sorszámozni kell azokat a rejtvénymezőket, ahol vízszintes vagy függőleges feladvány kezdődik. Ehhez is két egymásba ágyazott ciklus kell, amelyben minden még nem tiltott rejtvénymező egyre növekvő sorszámot kap, ha tőle balra tiltott és tőle jobbra nem tiltott rejtvénymező helyezkedik el, de akkor is, ha felette tiltott és alatta nem tiltott rejtvénymező található.

A keresztrejtvényt sorszámozó algoritmus Java megvalósítása

Továbbfejlesztési lehetőségek

  • A feladványok listázhatók és kideríthető a hosszuk.
  • A tiltott rejtvénymezők véletlenszerű elhelyezése helyett lehetne valamilyen szabály, stratégia az egymáshoz való helyzetükre, távolságukra, közvetlen szomszédságukra vonatkozóan. Figyelembe vehetnénk valamilyen szimmetriát is, mintákat, alakzatokat is. Véletlenszerű elhelyezésük nem biztos, hogy mindig jó/szerencsés: például a tiltott rejtvénymezők körbezárhatnak egy nem tiltottat, hosszabb feladványokat nehezebb találni…
  • A Java SE szoftverfejlesztő tanfolyam tematikájához kötődően többféle szótárból, fájlformátumból betölthetünk a feladványokhoz használható, például 7 betűs országnevek, 2 betűs kémiai elemek, női/férfi keresztnevek, autójelek, pénznemek, szinonimák…
  • A Java EE szoftverfejlesztő tanfolyam tematikához kötődően többféle webes adatforrásból, Wikipédiából, szótárból, API hívásokkal letölthetünk a feladványokhoz használható listákat, meghatározásokat, kulcs-érték párokat. A swing-es felületet lecserélhetjük böngészőben futó webes GUI-ra is.
  • A Java adatbázis-kezelő tanfolyam tematikájához kötődően a fentiek kiegészítéseként tervezhetünk és építhetünk helyben tárolt tudástárat, adatbázist, amiből hatékonyan lekérdezve adhatunk feladványokat a keresztrejtvényhez.
  • Miután a fentiek szerint valahogyan – tipikusan visszalépéses algoritmussal – meghatároztuk a feladványokat, a keresztrejtvényből menthetünk kitöltött változatot is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Digitális Témahét 2021

A Digitális Témahét 2016-ban indult országos rendezvénysorozat. Fő célja a digitális pedagógia módszertanának népszerűsítése és elterjesztése. A program fontos törekvése, hogy a digitáliskompetencia-fejlesztés az informatikán túl kiterjedjen más tantárgyakra is. A résztvevő pedagógusok és diákok változatos és kreatív iskolai projektek keretében fejleszthetik képességeiket technológiával támogatott tanulás során. A Digitális Témahét rendezvény minden meghirdetett programja ingyenes. A 2018/2019-es tanévben már több mint 3000 oktatási projekt valósult meg, közel 8000 pedagógus és 135000 diák részvételével.

A 2020/2021-es tanévben a rendezvény március 22-26. között valósult meg. Kiemelt témakörök/szempontok:

  • a multidiszciplináris megközelítés: a matematika, a természet- és mérnöki tudományok, valamint a művészet- és társadalomtudományok együttes megjelenítése;
  • a digitális technológia alkotó használata és az algoritmikus gondolkodás fejlesztése;
  • a kiemelt figyelmet igénylő tanulók fejlesztése és bevonása;
  • a nevelési-oktatási intézmények közötti együttműködés élénkítése;
  • a határon túli magyar pedagógusok és oktatási intézmények bevonása;
  • a digitális biztonság a mindennapi pénzügyeinkben;
  • az intézményen belül történő pedagógus közötti együttműködés élénkítése, a projektmódszer alkalmazásának kiterjesztése olyan kollégákra, akik még nem ismerik;
  • ebben a tanévben is a digitális gyermekvédelem, a médiatudatosság, a közgyűjtemények digitális tartalmainak nevelésben, oktatásban történő megjelenése.

Rendezvényünk plakátja

Az it-tanfolyam.hu 2021-ben is csatlakozott a rendezvénysorozathoz. Három oktatónk hirdetett négy programot a https://digitalistemahet.hu weblapon. A programjainkra 2021. március 23-án 9:00-12:00 óráig került sor.

9:00-9:50 – Kaczur Sándor: Hogyan kommunikálnak különböző szakemberek, miközben elkészül egy bevételt termelő, márkát építő honlap?
Az ötletgazda kitalálja a tutit. A legjobb üzletet. Ami sok pénzt termel. Nyilván online. Rájön arra, hogy ő ennek a megvalósításához egyedül kevés és különböző szakemberekből csapatot épít maga köré. No de ez nem megy könnyen, hiszen mindenki más nyelven beszél. Mégis a közös cél érdekében valahogyan, folyamatokban gondolkodva történik valami miközben telik az idő. Megérti egymást az ötletgazda, a grafikus, a marketing tanácsadó, a kreatív szövegíró, a szoftverfejlesztő, a rendszerüzemeltető, és ahogyan mondták régebben: és még sokan mások. Tehát kipattan a szikra és akad, aki képben van a trendi design elveivel és ergonómiával, a netes értékesítés apró praktikáival, a figyelemfelkeltő és tudatba égő szöveg elkészítésének trükkjeivel, a weboldalba beágyazható követőkódokkal, űrlapokkal, az online fizetési módok akadálymentes megvalósításával és persze nem árt, ha mindez biztonságosan és fenntarthatóan működik. Vajon miről beszélgethetnek? Hogyan valósul meg a projekt? Az előadás ismertet néhány tipikusan előforduló párbeszédet, döntési helyzetet, alternatívát, megoldást. A program szakmaközi kommunikációra fókuszál és a Java tanfolyamaink orientáló moduljához kötődik.

10:00-10:30 – Szegedi Kristóf: Játékprogramok nyerő stratégiáinak elemzése
A tudásalapú rendszerek elméleti alapjaihoz tartoznak a mesterséges intelligencia különböző megoldáskereső módszerei, az állapottér-reprezentáció és a klasszikus keresési stratégiák. Egy játék állapotait valahogyan nyilvántartjuk egy adatszerkezetben. Lehet, hogy néhány lépést előre kalkulálunk (kiterjesztünk) és ezek elágazásaiból fát (fa adatszerkezet) tudunk építeni. Ezeket hatékonyan karban kell tartani konstrukciós és szelekciós műveletekkel. Döntéseket is kell hozni. Vajon melyik állapot a jobb, vagy kevésbé rossz, legalább olyan jó mint ahol járunk? Ki kell értékelni és abba az irányba érdemes haladni, amelyben végül a döntések sokasága igazolja és egyben adja a nyerő stratégiát. Ha ez nem megy, akkor még mindig játszhatunk nem vesztő stratégiával, azaz lehet cél a hosszabb játékmenet, vagy akár a döntetlen állapot is. Az előadás ismertet néhány tipikus problémaszituációt, játékteret leképező reprezentációs gráfbeli navigációt és összehasonlít néhány fabejáró/gráfbejáró stratégiát. A program mindhárom Java tanfolyamunk orientáló moduljához kötődik.

10:40-11:20 – Kaczur Sándor: Java kollekciók hatékonysága
Adott egy ismert algoritmus egy ismert problémára. A gyakorlati bemutató példákat mutat arra, hogy az ismert Java kollekció keretrendszer különböző adatszerkezeteinek funkcionalitását/szolgáltatásait felhasználva mennyire eltérő megoldásokat tudunk készíteni. Mindegyik megoldás ugyanazt az eredményt adja, de alapjaiban más gondolatmenettel születtek. Vajon melyik tekinthető hatékonyabbnak? Mennyi tárhelyet igényelnek? Mennyi idő alatt hajtódnak végre? Mennyire bonyolultak, azaz mennyire könnyű/nehéz megérteni/dokumentálni/elmagyarázni? Előkerülnek különböző Set, Queue, List, Map implementációk, programozási tételek. Amit csak lehet, mérünk, összehasonlítunk, elemzünk. Végül az eredmények alapján javaslatokat adunk: mikor, miért, mit (mit ne), hogyan (hogyan ne) használjunk. A program a Java SE szoftverfejlesztő tanfolyamunk tematikájához kötődik.

11:30-12:00 – Kiss Balázs: Gondolkodjunk logikusan!
Az előadás során áttekintjük az intelligencia, a kreatív problémamegoldó és logikus gondolkodás összefüggéseit és izgalmas feladatokból válogatva közösen megoldunk néhány fejtörő feladatot.

 

A programjaink a Google Meet online platformon élőben zajlottak, ahová kb. 60-an látogattak el. Köszönöm oktató kollégáimnak, hogy örömmel csatlakoztak. Mindannyian jól éreztük magunkat. Igazán tartalmas programot állítottunk össze. Idén is szívesen csatlakoztunk és szívesen emlékszünk majd rá. Legközelebb talán már az offline világban is szervezhetünk eseményeket, tarthatunk rendezvényeket.

A szakmaközi kommunikációra fókuszáló első előadásomat – kiemelve a grafikus, marketing menedzser, szoftverfejlesztő, rendszerüzemeltető szakmákat – megtartottam a SZÁMALK-Szalézi Technikum és Szakgimnázium Digitális Témahét 2021 rendezvényéhez kötődően is, 2021. március 22-én 14:00-14:45-ig.

Rómeó és Júlia

Vajon hogyan kerül elő a Rómeó és Júlia az it-tanfolyam.hu szakmai blogban témaként? Hiszen mégiscsak egy Shakespeare színműről/tragédiáról van szó. Vajon mit programozhatunk Java nyelven ehhez kötődően épp Valentin-napon? Mindjárt kiderül.

Tegyünk fel egy kérdést és próbáljunk rá válaszolni! Vajon ki szereti jobban a másikat? Rómeó vagy Júlia?

Induljunk el az adatforrásból, amihez alkalmazkodnunk kell. A színmű angol nyelven publikusan elérhető XML formátumban: The Tragedy of Romeo and Juliet. Az XML fájlok könnyen feldolgozhatók Java nyelven. Részletek a fájlból (görgethető):

Az XML fájl felépítését tanulmányozva (1-5 alapján) megállapíthatóak az alábbiak:

  • A színmű öt felvonásból áll, ezeket <ACT></ACT> csomópontok jelölik.
  • Egy „adagnyi” beszédet a <SPEECH></SPEECH> csomópont fog össze.
  • A csomópontban található, hogy ki beszél: ez a <SPEAKER></SPEAKER> elem. A mesélő, kar esetén ez az elem üres, és a null-t nem szabad feldolgozni.
  • A csomópontban találhatók a szabadvers kimondott sorai: ezek a <LINE></LINE> elemek. Legalább egy sor minden beszédben van, és nem tudjuk előre a számukat.
  • Nem következetes helyen a DOM-ban, többféleképpen beágyazva és önállóan is előfordulhatnak <STAGEDIR></STAGEDIR> elemek. Ezek a színmű Kosztolányi-féle magyar fordításában dőlt betűvel megjelenő – cselekvésre utaló – színpadi utasítások. Van köztük csók is, amit az XML-ből nem szabad feldolgozni, bár erősen ráutaló magatartás. 🙂
  • Nem tudjuk előre, hogy hány csomópont található a fájlban.

A Java program készítése, tesztelése közben – mintegy mellékesen – megtudhatjuk, hogy Rómeó 612 sorban 24075 betűnyi, Júlia 544 sorban 21855 betűnyi szöveget mond. Persze nem mindet egymásnak mondják. Eközben vajon hányszor mondják ki a szeret, szeretem, szeretlek szavakat? A ragoktól, toldalékoktól, kis- és nagybetűket nem megkülönböztetve és attól is eltekintve, hogy éppen kinek/kiknek mondják amit éppen mondanak, egy becsléshez elegendő, ha a love szóra fókuszálunk (számíthatna a loving alak is).

Az alábbi Java forráskód betölti az XML fájlt a memóriába. Ezután kiválogatja a beszédeket. Ha a beszélő élő ember (szereplő), akkor érdekes, hogy mit/miket mond. Ha ROMEO vagy JULIET mondja az adott sort, akkor azt a program kiválogatja két generikus listába ( romeoLineList és julietLineList) beszédnyi adagokban. Ez nem szétválogatás programozási tétel, mert nem minden beszéd minden sora kerül valahová. A kivételkezelés nem kidolgozott.

Könnyen megkaphatjuk, hogy Rómeó hány darab olyan sort mond, amely tartalmazza a love szót. Például ennek a lambda kifejezésnek kiíratva az eredményét a konzolra:

Könnyen megkaphatjuk Rómeótól a 53 sornyi szöveget is így:

Íme Rómeó kiválogatott sorai (az 5. sorban kétszer is előfordul a love, de ez most nem számít):

Hasonlóan megkaphatjuk Júlia 38 kiválogatott sorát is:

Próbáljunk válaszolni a fentiek alapján a feltett kérdésre! Következtethetünk arra, hogy Rómeó jobban szereti Júliát. Legalábbis többször említi. 53>38. Persze tudjuk, hogy mindez nem ilyen egyszerű. 🙂

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, 25-28. óra: Objektumorientált programozás 3. rész, valamint a Java EE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: XML feldolgozás alkalmaihoz kötődik.

Nagyon különböző megoldásokat készíthetünk és szerteágazóan gyakorolhatunk, ha:

  • az XML fájlt kézzel mentjük a webről és utána a helyi fájlrendszerből dolgozzuk fel,
  • az XML fájlt közvetlenül a webről, dinamikusan olvassuk,
  • csak beépített XML-feldolgozást használunk,
  • külső XML API-t használunk,
  • DOM, SAX, XSL, van-e DTD,
  • XPath kifejezésekkel adunk választ a kérdésre,
  • a fenti didaktikusan egyszerű megoldás helyett haladóbb eszközöket (például: Stream API-t) használunk.