Egy matematika érettségi feladat megoldása programozással 2017

érettségi logó

érettségi logóA 2017-es középszintű matematika érettségi feladatsor 12. feladata inspirált egy Java program megírására. Szükséges hozzá néhány programozási tétel: sorozatszámítás, megszámolás, valamint adatszerkezetként ideális egy kétdimenziós tömb. Érdekes belegondolni, hogy mennyire más lehetne a problémamegoldás, ha programozhatnánk a matematika érettségi vizsgán. A teljes feladatsor a megoldásokkal együtt letölthető az oktatas.hu-ról.

12. feladat

Egy kockával kétszer egymás után dobunk. Adja meg annak a valószínűségét, hogy a két dobott szám összege 7 lesz! Válaszát indokolja!

Matematikai megoldás

A feladat nagyon egyszerű. Két megoldást ismertet a javítási-értékelési útmutató:

  • Összesen 6 * 6 = 36-féleképpen dobhatunk. Hat olyan dobáspár van, amelyben 7 az összeg: (1; 6), (2; 5), (3; 4), (4; 3), (5; 2) és (6; 1). A keresett valószínűség 6/36-od, vagyis egyhatod.
  • Bármennyit is dobunk elsőre, ezt a második dobás egyféleképpen egészítheti ki 7-re. Így a második dobásnál a hat lehetséges értékből egy lesz számunkra kedvező. A keresett valószínűség egyhatod.

Közelítő megoldások szimulációval

Egy alkalom két kockadobást jelent egymás után. A dobások sorrendje nem számít (alkalmanként és összességében sem). Minél több alkalommal végezzük el a kockadobásokat, annál jobban megközelítjük a fenti valószínűséget (várható értéket, bővebben: nagy számok törvénye). Az egyhatod közelítő értéke a Java double adattípusával 0.16666666666666666.

1. megoldás

Ha nem akarunk emlékezni a dobásokra, összegükre, csupán megszámolnánk, hogy hány olyan dobáspár van, amelyben 7 az összeg, akkor ehhez mindössze egy számláló ciklus kell, aminek a ciklusmagjában két véletlen kockadobás összegét előállítjuk és növelünk egy számlálót/gyűjtőt, ha az éppen 7. Az eredményt a számláló és a ciklus lépésszámának hányadosa adja meg. Például meghívhatjuk a metódust így: kockadobas1(5000); és kaphatjuk eredményül ezt: 5000 alkalomból 7 összegként 836 alkalommal fordult elő. Valószínűség: 0.1672 . A metódus kivételt dob, ha értelmetlen a paramétere. Íme a metódus Java forráskódja:

2. megoldás

Ha egy 13 elemű egész típusú tömböt használhatunk emlékezetként. Kezdetben 2-től 12-ig indexelve nullázzuk ki, így csoportos gyűjtést tudunk megvalósítani. A nullázás most inicializáló blokkal történt, mert nem sok eleme van a tömbnek (sok elemnél inkább használjunk erre ciklust). A tömb első két elemét nem használjuk semmire. Mi történik a ciklusban? Például dobas1=3 és dobas2=4 esetén a dobasDbTomb[7] elemét növeli (mindegy mi volt ott korábban, de inkrementálódjon). Most több adatot tárolunk, mint amiből megválaszolható a feladatban megfogalmazott konkrét kérdés, de ezt tekinthetjük strukturális tartaléknak.

Hasonló, egydimenziós tömbbel történő belső adattárolást megvalósító elosztott alkalmazásról blogoltunk már: Kockadobás kliens-szerver alkalmazás.

3. megoldás

Ez az igazi szimuláció, swing GUI grafikus környezetben, ahogyan az alábbi képernyőképen látható. A megvalósítás kétdimenziós tömböt használ adatszerkezetként. Álljon 7 sorból és 7 oszlopból és legyen i a sor- és j az oszlopindex. A tömb [0][0]-dik elemét nem használjuk semmire. Az első oszlopába ( j=0 és i>0) bekerülhetnek a dobókockán előforduló számok 1-től 6-ig. Hasonlóan az első sorba ( i=0 és j>0) is. Ezek a dobott számok alapján indexek lesznek és az ábrán zöld hátterű cellákba kerültek. A tömb többi eleme kezdetben 0 (nulla), ezek az ábrán fehér hátterű cellák. A szürke hátterű cellák (mellékátló) esetén a dobott számok összege 7 és jól látszik, hogy ez hatféleképpen fordulhat elő a 36-féle eset közül. Például a 2. sor 5. oszlopában lévő szám mutatja, hogy a 10000 alkalomból 274-szer fordult elő az, hogy a dobáspár a (2; 5) lett. A tömb két indexe felcserélhető lenne, mert ez a mellékátlóban lévő számok összegét nem befolyásolja.

Kockadobás program képernyőkép

A programban kiválasztható néhány alkalomból amit szeretnénk, és a Dob nyomógombra kattintva indul el időzítővel a folyamat. Várakoztatás/menet közben piros színnel kiemelve látszik/megfigyelhető, hogy az éppen aktuális dobás hol növeli az értéket/előfordulást/darabszámot. A képernyőképen befejeződött állapot látható. Az eredményt a szürke cellákban lévő számok összegének és az alkalmak számának hányadosa adja meg. Ezt a háttérbeli kétdimenziós tömbben összesítéssel az alábbi Java forráskód-részlet adja meg:

Most lényegesen több adatot tárolunk, mint ami a konkrét válaszhoz kell, de cserébe jól érzékeltethető a csoportos gyűjtés/megszámolás működése. A program grafikus felhasználói felületének felépítését és az eseménykezelés megvalósítását most nem részletezzük.

Eszünkbe juthatna, hogy a program miért dob kétszer 1 és 6 közötti számot egymás után és ezt összegzi, amikor egyetlen 2 és 12 közötti dobással (véletlenszám generálással) megkaphatnánk a dobáspár összegét. Hiszen két db 1 és 6 közötti szám összege mindig 2 és 12 közötti szám. Jó lenne ez az ötlet/megvalósítás? Igen? Nem? Miért? A hozzászólásokhoz várjuk az indoklást.

Ajánljuk matematika érettségi feladat címkénket, mert a témában évről-évre blogolunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra: Objektumorientált programozás alkalmaira épülő 29-36. óra: Grafikus felhasználói felület alkalmaihoz kötődik.

Húsvétvasárnap

Húsvétvasárnap

HúsvétvasárnapA nyugati kereszténység húsvétvasárnapja legkorábban március 22-ére, legkésőbb április 25-re esik. Másképpen: a húsvét mozgó ünnep, azaz nem esik az év ugyanazon napjára minden évben. Az első niceai zsinat 325-ben úgy határozott, hogy legyen a keresztény húsvét időpontja a tavaszi napéjegyenlőség utáni első holdtöltét követő vasárnap.

A húsvét kiszámítására a legismertebb algoritmus Gauss módszere. A Java implementációban az easterGauss() függvény által elfogadható év paramétert életszerűen lekorlátoztam 1900-2099-ig terjedő évekre, valamint a vezérlés az aktuális és a rákövetkező 19 évben ír ki eredményt:

Az algoritmus részletes magyarázata alapján könnyen kiegészíthető úgy, hogy tetszőleges évre, illetve különböző naptárakra is működjön.

A kapott eredmények megtekinthetők:

A feladat – a kivételkezeléstől eltekintve – a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 5-8. óra: Vezérlési szerkezetek alkalmához kötődik.

Kígyókocka készítése

Kígyókocka

KígyókockaA kígyókocka (snake cube, chain cube) 27 egyforma méretű, egymáshoz képest mozgatható/forgatható kockából áll. A kockákat összeköti egy rugalmas fonal/gumi. Az első és az utolsó kocka egy-egy lapján egy-egy lyuk van. A közbenső kockák hat lapjából kettő lyukas. Fából és műanyagból is készülhetnek. Általában kétféle színnel színezettek a kockák. A cél, hogy a 27 kockát kígyózva „összehajtogatva” a kígyó (lánc) összeálljon egy nagyobb 3x3x3 méretű kockává.

Ez egy két részből álló blog bejegyzés 1. része. A blog bejegyzés 2. része itt található.

A színek – a játék gyártóitól függően – nehézségi szinteket jelölhetnek (zöld, kék, piros, narancs, lila). Léteznek könnyebben és nehezebben megoldható kígyókockák. Előbbieknél többször fordul elő két egymással szemben lévő lyukas lap a közbenső kockákon, utóbbiaknál gyakoribbak az egymással szomszédos lapokon lévő lyukak. Másképpen: előbbiben több a három hosszú egyenes rész, utóbbi szinte állandóan tekereg. Általában a kocka egyik csúcsából kezdjük a megoldást, de az igazán nehéz játékok esetében a kígyó indulhat akár a kocka egyik lapjának (3×3) középső kockájától is.

Vannak olyan kígyókockák, amelyeknek több megoldása is van, azaz többféleképpen is összeállítható kockává. Ezek részletes ismertetése (típusok, gyártók, színek), a megoldások (statikusan és dinamikusan), irányokat mutató jelölésrendszer (Front, Left, Up, Back, Right, Down) elérhető Jaap Scherphuis – holland puzzle rajongó – weboldalán: Jaap’s Puzzle Page.

Kígyókocka

Olyan Java programot készítünk, amely véletlenszerű kígyókockát állít elő.

Tervezés

Szükséges egy háromdimenziós tömb adatszerkezet a kocka tárolására. Több okból is hasznos, ha a tömb mérete 5x5x5. Egyrészt így indexek 0-tól 4-ig futnak és a tömb közepén lévő 3x3x3-as kocka elemei kényelmesen – mátrixszerűen – indexelhetők 1-től 3-ig. Másrészt a tömb közepén lévő 3x3x3-as kocka minden elemére igaz, hogy egységesen van 26 db érvényesen indexelhető szomszédja. A 125 tömbelemből a széleken lévő 98 elem negatív számokkal feltölthető.

A szokásos i, j, k egységvektor rendszerben (koordináta-rendszerben) gondolkodva, i és j a képernyő síkját, k pedig a mélységet jelenti. A k-val 0-tól 4-ig „szeletelve” a tömböt, öt db négyzetet/mátrixot kapunk az alábbiak szerint. A színes tömbelemek negatív számokkal kerülnek feltöltésre, a kígyó útját határolják mindhárom irányból:

Kígyókocka tervezés

A belül lévő – fehér színű – 3x3x3-as kocka/tömb elemeit kezdőértékként célszerű 0-val feltölteni.

A szomszédos kockák kiválasztása során csak a középen lévő kocka 6 db lapszomszédját kell figyelembe venni. A középen lévő (a következő ábrán nem látszó) kocka három tengely szerinti 2-2-2 szomszédos kockája különböző színekkel jelölt.

Kígyókocka tervezés

Él- és csúcsszomszédság esetén nem tud tekeredni a kígyó. A forduláshoz/tekeredéshez legalább 3 – a kígyóban egymás utáni – kocka szükséges. Az aktuális kockának – pozíciójától függően – legfeljebb 6 lapszomszédja lehet. Ezt csökkenti, ha a kocka valamelyik csúcsban helyezkedik el, illetve menet közben is – ahogyan egyre hosszabb lesz a kígyó – folyamatosan csökken a még szabad elemek száma.

A megoldás során a belül lévő – fehér színű – 3x3x3-as kocka/tömb elemeit kell sorszámozni 1-től 27-ig, jelölve ezzel a kígyó útját. A kezdetben 0-val jelölt szabad elemek végül elfogynak.

Megállapodunk abban, hogy a kígyó az útját az (1, 1, 1) pozícióban kezdi és az 1 sorszámot kapja. Addig kell újabb szomszédos kockákat – egyesével haladva – kiválasztani módszeresen vagy véletlenszerűen próbálkozva, vagy akár visszalépéses algoritmussal is, amíg mind a 27 kiválasztásra kerül.

Megvalósítás

Létre kell hozni a háromdimenziós tömböt példányváltozóként:
int[][][] cube=new int[5][5][5];

A cubeInit() metódus kezdetben feltölti a tömb elemeit. A széleken lévő elemekbe különböző negatív értékek kerülnek, hogy jól megkülönböztethető legyen, melyik ciklus melyik pozíciókért felel. Másképpen is lehetne: például kezdetben minden elem -1, utána a belül lévők felülírhatók 0-val.

Hasznos a cubePlot() metódus, amellyel megjeleníthetők a konzolon a tömb elemei (állapota):

A getNextNeighbour() függvény egydimenziós tömbként ( int[]) visszaadja a paramétereként átvett – x, y, z koordinátával jelölt – kocka egyik kiválasztott szomszédját, amely a kígyó útját jelöli. A kiválasztás történhet módszeresen vagy véletlenszerűen próbálkozva, vagy akár visszalépéses algoritmussal is. A metódus forráskódját most nem részletezem. A metódus felelős a kígyó helyes útvonaláért, azaz a kiválasztás során a kígyó nem rekedhet meg zsákutcában, másképpen nem haraphatja meg saját magát.

A vezérlést a run() metódus végzi el az alábbiak szerint:

Addig fut a ciklus, amíg a kígyó nem tölti ki a 3x3x3-as kockát (másképpen: amíg a kígyó nem éri el a maximális hosszúságot). A tömb állapotát kezdetben és lépésenként is kiíratja a vezérlő metódus a konzolra.

Konzolos eredmény

A konzolos eredmény előállításánál fontos volt, a tömb változásait tudjuk követni. Az összes negatív szám elhagyható lehet a kiírásból, ha meggyőződtünk az implementált algoritmus helyes működéséről. Átlátva a problémát, a megoldás könnyen elállítható egy grafikus és/vagy egy irányokat mutató jelölésrendszer szerint is, például:

Kígyókocka tervezés

Hivatkozások

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam tematikájához kötődik. Több alkalommal is tudunk ezzel a feladattal foglalkozni, attól függően, hogy a getNextNeighbour() függvény működését hogyan tervezzük és implementáljuk:

  • A 13-16. óra: Tömbök témakör esetén a szomszédos kockák közül módszeresen – azonos sorrendben haladva a legfeljebb 6 lehetséges szomszéd közül – választjuk ki mindig az elsőt. Ekkor mindig ugyanazt az egyetlen helyes megoldást kapjuk meg.
  • A 17-28. óra: Objektumorientált programozás témakör esetén atipikusan a kivételkezelést használhatjuk vezérlésre úgy, hogy a lehetséges szomszédos kockák közül mindig véletlenszerűen választunk. Ekkor a kígyó önmagába harapását úgy előzzük meg, hogy tömb túlindexelésekor keletkező kivételt benyeljük és újrakezdjük a feladatot mindaddig, amíg találunk egy olyan megoldást, aminek lépései közben nem keletkezik kivétel.
  • Az orientáló modul 9-12. óra: Mesterséges intelligencia témakör esetén véletlenszerű kocka kiválasztási stratégiával rendelkező visszalépéses algoritmust specifikálhatunk és implementálhatunk. Ez lényegesen összetettebb feladat és mindig helyes megoldást ad több lehetséges megoldás közül.

Ez egy két részből álló blog bejegyzés 1. része. A blog bejegyzés 2. része itt található.

CHOO + CHOO = TRAIN

CHOO+CHOO=TRAIN

CHOO+CHOO=TRAINMost nem a híres kisvonatról van szó, hanem egy ismert kriptoaritmetikai feladványról. Ebben a feladattípusban egyszerű matematikai műveletek szerepelnek és a különböző betűk különböző számjegyeket jelölnek. Általában többféleképpen megoldhatók: intuíció, ötlet, módszeres próbálkozás, következtetés, kizárás vagy klasszikus behelyettesítés. Ha van megoldás és meg is találunk egyet, akkor a következő kérdés az, hogy van-e még, illetve összesen hány megoldás van?

Íme a feladat:

Érdemes minden megoldás során figyelembe venni a minden számjegyet 0-9-ig végigpróbáló lépések helyett legalább az alábbi öt feltételt:

  • C >= 5, hiszen CHOO olyan négyjegyű szám, aminek a kétszerese ötjegyű szám,
  • T = 1, mivel két négyjegyű szám összege 10000 < TRAIN < 20000 (ebben az esetben),
  • O >= 6, hiszen maradéknak képződnie kell, mert I és N különbözik,
  • 2 <= N < I és
  • I >= 3 és szintén a maradékképződés miatt.

Esetleg még tovább gondolkodva, felfedezhetünk egyéb összefüggéseket, illetve kizárhatunk egyéb értékeket, így jelentősen csökkenthető egy-egy Java implementáció lépésszáma.

1. megoldás

Ez adatszerkezet nélküli megoldás, így eléggé összetett feltétellel valósul meg a művelet teljesülése (megfelelő helyiértékek használatával) és a különbözőségek vizsgálata.

2. megoldás

Itt az ellenőrzési feltétel egyszerűbb, mert a különbözőség/egyediség tesztelését áthárítottam a halmazszerűen működő HashSet generikus kollekcióra, építve annak beépített képességére.

Mit gondolsz, melyik megoldás hajtódik végre gyorsabban? Miért?

Mivel a két megoldásnál a ciklusok szervezése megegyezik, így a használt adatszerkezet dönt (hiszen annak konstrukciós és szelekciós, azaz karbantartási műveletei vannak). Az 1. megoldás a gyorsabb, mert nem használ adatszerkezetet. A 2. megoldás lényegesen lassabban fut, mert a generikus kollekció műveletei miatt az automatikus szemétgyűjtő tevékenység erősen igénybe vett. A különbség nagyságrendileg 15-szörös.

A feladatnak két megoldása van: 5466 + 5466 = 10932 és 5488 + 5488 = 10976.

A bejegyzéshez tartozó teljes – időméréssel kiegészített – forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

Akinek kedve támadt, lásson hozzá hasonló feladatokhoz:

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 9-12. óra: Metódusok, rekurzió alkalomhoz, illetve a 21-24. óra: Objektumorientált programozás, 2. rész alkalomhoz kötődik.

Munkakör, létszám, névsor lekérdezése

Munkakör, létszám, névsor

Munkakör, létszám, névsorAz a fela­da­tunk, hogy az Oracle HR sé­má­ból le­kér­dez­ve állít­suk elő munka­kö­rön­ként cso­por­to­sít­va az al­kal­ma­zottak lét­szá­mát és név­so­rát. Adott a JOBS és az EMPLOYEES táb­lák kö­zötti 1:N kap­cso­lat. A JOBS táb­lá­ban (szó­tár) lé­vő JOB_ID egye­di kulcs­hoz tar­to­zik egy hosszabb szö­ve­ges JOB_TITLE le­í­rás (mun­ka­kör), va­la­mint az EMPLOYEES táb­lá­ban meg­ta­lál­ha­tó a JOB_ID kül­ső kulcs­ként. Az EMPLOYEES táb­lá­ban elér­he­tő az al­kal­ma­zottak neve: FIRST_NAME és LAST_NAME. Min­den mun­ka­kört be­tölt leg­alább 1 al­kal­ma­zott és min­den al­kal­ma­zott­hoz van hozzá­ren­delt mun­ka­kör.

Oracle HR séma

Tanfolyamainkon többféleképpen modellezzük és tervezzük meg a feladat megoldását.

Megoldás (Java SE szoftverfejlesztő tanfolyam)

A Java SE szoftverfejlesztő tanfolyam 45-52. óra: Adatbázis-kezelés JDBC alapon alkalmain a következők szerint modellezünk és tervezünk.

Kiindulunk az alábbi egyszerű SQL parancsból:

Munkakör-létszám-névsor-SQL-1

Eredményül ezt kapjuk (részlet):

Munkakör, létszám, névsor eredmény 1

A kapott eredménytáblát a Java kliensprogram fejlesztése során leképezzük egy generikus POJO listába, a rekordonként összetartozó 3 adatból előállítva az objektumok tulajdonságait. A generikus listát csoportváltás algoritmussal feldolgozva, könnyen listázzuk a létszámot és a névsort munkakörönként csoportosítva. A munkakörönkénti létszámot a listafeldolgozás során megkapjuk. Ezt most nem részletezzük, de tanfolyamaink hallgatói számára ILIAS e-learning tananyagban tesszük elérhetővé a teljes forráskódot. Ennél a megoldásnál egyszerűbb a lekérdező parancs, de összetett az eredmény feldolgozása.

Megoldás (Java adatbázis-kezelő tanfolyam)

A Java adatbázis-kezelő tanfolyam 9-12. óra: Oracle HR séma elemzése, 13-16. óra: Konzolos kliensalkalmazás fejlesztése JDBC alapon, 1. rész, 33-36. óra: Grafikus kliensalkalmazás fejlesztése JDBC alapon, 2. rész alkalmával a következők szerint modellezünk és tervezünk.

Denormalizált eredményt közvetlenül visszaadni képes összetett SQL parancsot készítünk:

Munkakör, létszám, névsor SQL-2

Eredményül ezt kapjuk (részlet):

Munkakör, létszám, névsor, eredmény-2

A kapott eredménytáblát a Java kliensprogram fejlesztése során közvetlenül kiíratjuk, hiszen minden szükséges adatot tartalmaz. Az utolsó oszlopban összefűzve megkapjuk az adott részleghez tartozó alkalmazottak névsorát. Ezt most nem részletezzük, de tanfolyamaink hallgatói számára ILIAS e-learning tananyagban tesszük elérhetővé a teljes forráskódot. Ennél a megoldásnál összetettebb a lekérdező parancs, de egyszerű az eredmény feldolgozása.

Érdemes átgondolni és összehasonlítani a kétféle különböző megközelítés lehetőségeit, korlátait. Ha egyensúlyozni kell a kliensprogram és az adatbázis-szerver terhelése között, valamint az MVC modell összetettsége, karbantarthatósága, könnyen dokumentálhatósága a/is szempont, akkor többféle alternatív módszer is bevethető, valamint építhetünk a különböző Oracle verziók (dialektusok) képességeire is.

Az SQL forráskódok formázásához a Free Online SQL Formatter-t használtam.