Nemzeti pizza nap

Az USA-ban és még néhány országban február 9-én ünneplik a nemzeti pizza napot. Ehhez kötődően kreatív ötletekkel és persze finom pizzákkal vonzzák az éttermek a vendégeket.

Kreatív ötletekkel a mi oktatói csapatunk is rendelkezik. A nemzeti pizza nap inspirált bennünket az alábbi feladat megoldására.

Osszunk szét igazságosan 9 db egyforma pizzát 10 fő között!

Az igazságost úgy értelmezzük, hogy mindenkinek ugyanannyi (ugyanakkora szelet) pizza jut. Két megoldást mutatunk be grafikusan. Ötleteket adunk ahhoz, hogyan programozható le mindez Java nyelven: swing grafikus felületen, grafikai primitívekkel vagy ismert algoritmusokkal. Ábrákkal mutatjuk be a megoldásokat, színekkel kiemelve az azonos/különböző méretű pizzaszeleteket.

1. megoldás

Mind a 9 db pizzából vágjunk ki egytized méretű szeletet. Marad 9 db kilenctized méretű pizzaszelet és a 9 db egytizedből összeállítható a 10. főnek járó szintén kilenctized méretű pizzaszelet/adag.

2. megoldás

A 9 db pizzából 5 db pizzát vágjunk ketté. Keletkezik 10 db fél pizza. A maradék 4 db pizzát harmadoljunk fel. Keletkezik 12 db egyharmad pizza. A keletkező 2 db egyharmad pizzát osszuk fel 5-5 részre. Keletkezik 10 db egytizenötöd méretű pizzaszelet. Az egyharmad ötödrésze adja az egytizenötöd részt. A 10 főnek járó adaghoz rakjuk össze a 30 db részből a különbözőket: egy adag kilenctized, ami egy fél és egy harmad és egy tizenötöd részből áll össze. Másképpen: 9/10 = 27/30 = 15/30 + 10/30 + 2/30.

Ötletek a Java nyelvű megvalósításhoz

  • A JFrame osztályból származtatott ablak utódosztály tartalompaneljére ráhelyezhető egy öröklődés útján testre szabott JPanel utódosztályból létrehozott objektum. Ennek van grafikus vászna ( Graphics objektum), amely saját koordináta-rendszerrel és pixelszintű hozzáféréssel rendelkezik. Rendelkezésre áll számos grafikai primitív rajzolására használható metódus, például vonal/szakasz, téglalap, ellipszis. A grafikai primitíveknek rajzolható adott színű körvonala és lehetnek adott színnel kitöltöttek is. Például: drawArc(x, y, width, height, startAngle, arcAngle), vagy az azonos paraméterezésű fillArc(...) metódus. A két szög értelmezése: a startAngle az analóg órán a 3 óra irányába néz, valamint az arcAngle pozitív szög fokban megadva az óramutató járásával ellenkező irányba mutat.
  • A beépített grafikus primitívek helyett használhatunk klasszikus algoritmusokat is. Például a Bresenham vonalrajzoló algoritmus, vagy ennek általánosítása a Bresenham körrajzoló (felezőpont) algoritmus. Ezekhez hasznos némi koordináta-geometria és többféle koordináta-rendszer ismerete.

Ötletek továbbfejlesztéshez

  • Megpróbálhatjuk általánosítani a problémát: osszunk szét igazságosan n db egyforma pizzát n+1 fő között!
  • A statikus képek előállítását követően időzítéssel ellátott animációt is készíthetünk, amely megfelelően mozgatja, forgatja a pizzaszeleteket. Így fázisonként megmutathatók a feladat megoldásának lépései. Ehhez többrétegű vászontechnika szükséges, amelyen könnyen mozgatható a nézőhöz közelebbi réteg úgy, hogy a háttér nem változik meg.
  • A saját rajzolt elemek időzítővel – javax.swing.Timer – történő mozgatására példáink java.swing-ben: Hóesés szimuláció és Naprendszer szimuláció – megvalósítás Java nyelven.
  • A saját rajzolt elemek kézi – eseménykezelővel megvalósított – mozgatásához felhasználható példánk JavaFX-ben: Kígyókocka grafikus felületen.
  • A fázisokból lépésenként vezérelhetően felépülő ábrák elkészítéséhez példáink: Fibonacci-spirál és Koch-görbe rajzolása.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat – a matematikai háttértől eltekintve – a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 21-24. óra: Objektumorientált programozás 2. rész, valamint a 29-36. Grafikus felhasználói felület alkalmaihoz kötődik.

Rácsrejtjelezés

Időnként készítünk oktatóprogramokat is tanfolyamainkon. Most az volt a cél, hogy kódolás/dekódolás szakterület egyik ismert betűkeveréses algoritmusának működését mutassa be lépésről-lépésre az oktatóprogram. A rácsrejtjelezést választottuk.

Az elkészült program Java swing-es felületű és Windows Classic look-and-feel bőrrel így néz ki működés közben:

A rácsrejtjelezés a képernyőképen látható 4×4-es Kódrács használatán alapul.

A titkosítandó szöveget karakterenként beleírjuk az aktuális kódrácsba soronként lefelé, azon belül balról jobbra haladva. Ha a négy pozíció betelt, akkor el kell fordítani a kódrácsot az óramutató járásával megegyező irányban 90 fokkal. Ha a szöveg hosszabb 16 karakternél, akkor elölről kell kezdeni. Ha készen vagyunk, akkor soronként haladva leírjuk egymás után a kódrácsban található karaktereket.

A megfejtéshez ismernünk kell a titkosított karaktersorozaton kívül a felhasznált kódrácsot is. A karaktersorozatot soronként lefelé haladva beírjuk a kódrácsba, az ismert kódrácsot ráhelyezve soronként lefelé, azon belül balról jobbra haladva kiolvashatjuk a megfejtést. Természetesen a kódrácsot most is forgatni kell minden negyedik karakter után.

Megfigyelhető, hogy bármely karaktert tudunk titkosítani és megfejteni. Ezért a rácsrejtjelezés ebből a szempontból univerzális módszer.

A kódrács ismerete nélkül a titkosított szöveg nem fejthető meg, tartalmára csak nehézkes következtetést adhatunk. Például, ha tudjuk, hogy milyen nyelvű a titkosított szöveg, akkor támpontot adhat a megfejtéséhez a nyelv ábécéjében előforduló betűk ismert gyakorisága.

A képernyőkép éppen a megfejtés egyik pillanatában készült. A feladó továbbította a titkosított szöveget és a kódrácsot a címzettnek, aki elkezdte annak megfejtését. A negyedik karakter a b volt, utoljára erre kattintott a (4;4) pozícióban. Ezt követte egy rácsforgatás, amelyhez tartozik egy ablak, amely megjeleníti a „Rácsforgatás következik.” szöveget. Ezután a kódrács elfordult, és a következő cella a második sor első cellája lesz. Ha hibás cellára, pozícióra kattintunk, akkor a következő hibaüzeneteket kaphatjuk: „Hibáztál! Folytathatod a titkosítást.” vagy „Hibáztál! Folytathatod a megfejtést.” Ha befejeztük a titkosítást, vagy a megfejtést, akkor a következő üzeneteket kaphatjuk: „A kódolás sikerült.” vagy „A megfejtés sikerült.”

A program tartalmaz egy gyakorlást támogatandó szövegkészletet. Ennek minden eleme 16 hosszúságú, az egyszerűség kedvéért – így nem kell véletlenszerű karakterekkel feltölteni a rács kimaradt celláit, illetve nem kell 16-os csoportokkal foglalkozni.

A Titkosítás és megfejtés fülön látható egy véletlenszerűen kiválasztott szöveg, amelyet karakterenként kódolni lehet a kódrács megfelelő cellájára kattintva. Ha kész, a Továbbítás gombbal a feladó elküldi a címzettnek a titkosított karaktersorozatot, aki hasonlóan megfejti. „Útközben” megfigyelhető, hogy éppen hányadik elforgatásnál tartunk és természetesen megjelenik az aktuális ráccsal titkosított szöveg is.

Az űrlapon lévő Kódrács csoportablak az aktuálisan, véletlenszerűen legenerált kódrácson kívül a kiválasztott cellák pozícióit is tartalmazza. Az (1;1) pozícióban a bal felső cella található. A kódrács a Másik nyomógombbal véletlenszerűen újragenerálható. Ennek megvalósításakor több probléma, ötlet is felmerülhet. Például használható visszalépéses keresés algoritmus.

Most nem specifikáljuk részletesebben, például objektumorientált tervezés, eseménykezelés, háttérbeli objektumok vagy GUI komponensek működésének/vezérlésének szintjén. Aki kedvet kapott és úgy érzi, hogy meg tudja ugrani ezt a kihívást, akkor bátran elkészítheti. Hajrá! Mivel oktatóprogram, szükséges hozzá Leírás és Teszt is.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb oktatóprogramot tervezni, kódolni, tesztelni.

Doktoranduszok programoznak – újratöltve

it-tanfolyam.hu doktoranduszok programoznak

it-tanfolyam.hu doktoranduszok programoznakSaját doktorandusz csoporttársaimmal én is többször beszélgettem már arról – ahogyan Sándor is tette 2018-ban –, hogyan tudnák/tudják használni a programozás eszköztárát, módszereit, lehetőségeit saját kutatási munkájukban, beépítve a kutatási folyamat egyes lépéseibe, illetve disszertációjuk elkészítésébe.

A 7 fős csoportban mindenkinek más az alapvégzettsége, így szoftverfejlesztéshez, programozáshoz közös szókincs és terminológia haladó szinten természetesen nincs, viszont közös bennünk, hogy mindannyian alkotunk különféle modelleket és elemzünk adatokat. A csoport teljesen inhomogén, több szempontból is: ki melyik évfolyamot végzi, hol tart a kutatómunkájában, vannak-e ipari kapcsolatai, nappali vagy levelező képzésben végzi tanulmányait és persze ki mikor ér rá.

Különféle modelleket alkotunk

  • a mérnökök, fizikusok, geográfusok, biológusok többféle kísérletet végeznek el, szimulációkat terveznek és futtatnak, mérőeszközöket és műszereket használnak,
  • az informatikusok különböző matematikai eszközöket alkalmazva objektumorientált – vagy másféle – modellezést végeznek, szoftvereket terveznek, javítanak, újraírnak.

Adatokat is elemzünk, ki-ki előképzettségének megfelelően

  • kérdőívező szoftverekből exportálva valamit,
  • Excel munkalapokon, függvényekkel, adatbázis-kezelő funkciókkal, kimutatásokkal (Pivot táblák),
  • különböző fájlformátumokkal (CSV, XML, JSON, egyedi) dolgozunk és konvertálunk A-ból B-be,
  • távoli adatbázisokhoz, felhőbeli adattárházakhoz csatlakozunk, lekérdezünk és kapunk valamilyen – többnyire szabványos – adathalmazt,
  • matematikai, statisztikai szoftvereket használunk, például: MATLAB, Derive, Maple, SPSS.

Az öt évvel ezelőtti tematikát újragondoltuk. Kérdőívben felmértük a csoporttársak koncepcionális és konkrét igényeit. Más doktori iskolák hallgatói közül is toboroztunk. Ehhez kötődően köszönjük a DOSZ segítségét. Ezek alapján összeállítottunk egy olyan 3 részből álló tematikát, ami mindannyiunk számára hasznos. A 72 óra három 24 órás modulból áll: Java programozás, MATLAB programrendszer, mesterséges intelligencia.

Java programozás modul

  • 1-6. óra: Objektumorientált modellezés, MVC rétegek, algoritmus- és eseményvezérelt programozás
  • 7-12. óra: Fájlkezelés és szövegfeldolgozás (XLS, CSV, XML, JSON formátumú adatok írása, olvasása, feldolgozása), helyi és távoli adatforrásból
  • 13-18. óra: Adatbázis-kezelés JDBC alapon (SQL parancsok, CRUD műveletek, hierarchikus lekérdezések), helyi és távoli adatforrásból, natív módon és készen kapott API-kkal
  • 19-24. óra: Komplex adatfeldolgozási feladatok megoldása programozási tételek használatával, egyszerű statisztikai funkciók implementálásával

MATLAB programrendszer modul

  • 1-6. óra: Bevezetés az MATLAB nyelvbe (R2012 vs. R2022), utasításkészlet, vektorok, mátrixok, szkriptek, függvények, grafika
  • 7-12. óra: Szimulációk tervezése és készítése, numerikus módszerek áttekintése, algoritmizálása, tesztelés, analitikus megoldás, egyenletek megoldása
  • 13-18. óra: Adatok importálása helyi és távoli adatforrásból is, fájlkezelés: szövegfájlok, Excel-fájlok, import, feldolgozás, export, statisztikai alapok
  • 19-24. óra: Statisztikai próbák (illeszkedés- és függetlenség vizsgálata), hisztogramok készítése, differenciálegyenletek megoldása

Mesterséges intelligencia modul

  • 1-6. óra: Klasszikus és újabb megközelítések, alap AI funkcionalitás, megerősítéses és gépi tanulás lehetőségei és korlátai, OpenAI GPT nyelvi modell
  • 7-12. óra: Általános csevegés lehetőségei, korlátai, hasznos tanácsok; csevegés fájlok (szöveg, multimédia) tartalmáról; generatív AI funkciói; kép, ábra, grafikon, térkép, hang, animáció, videó generálása és ezek tömeges feldolgozása; programozási tételek alkalmazása multimédia analitikával együtt
  • 13-18. óra: Statisztikai adatok elemzése AI eszközökkel, automatikus tételbizonyítás AI eszközökkel, gráfelméleti kérdések kontra AI, hatékonysághoz kötődő kérdések AI eszközök esetén
  • 19-24. óra: Objektum- és aspektusorientált tervezés AI eszközökkel, kutatómunkát támogató AI eszközök

Mivel mindenki doktorandusz a csoportban, így a különböző MSc-s alapvégzettsége ellenére mindannyiunknak vannak strukturális programozáshoz kötődő alapismeretei, valamint adatok elemzéséhez szükséges elméleti matematikai/statisztikai alapjai.

A csoport órái szeptembertől decemberig, szombatonként zajlottak. Sándor tartotta a 24 órás Java programozás modult. Ez nagyban lefedi a Java SE szoftverfejlesztő tanfolyamunk tematikáját és kapcsolódik a Java EE szoftverfejlesztő tanfolyamunk és a Java adatbázis-kezelő tanfolyamunk tematikájához is. Én tartottam a 24 órás MATLAB programrendszer modult. Ketten közösen tartottuk a 24 órás Mesterséges intelligencia modult. Igazán tartalmas őszi időszakot jelentett számunkra ez a 12 szombat. Mindenki elvitte, amit beletett.

A koncepciót once-in-a-lifetime jelleggel dolgoztuk ki 🙂 (újratöltve) azzal a fő szándékkal, hogy hatékonyabban működjünk együtt a jövőben. A visszajelzések alapján bátran állíthatom, hogy ez gördülékenyen fog menni. Egyben köszönöm mindenkinek az aktív, konstruktív részvételt.

Kölcsönös ajándékozás véletlenszerűen

A kölcsönös ajándékozás időről-időre több közösségben is felmerül. Munkahelyi környezetben és iskolai csoportokban is (például: Télapó, karácsony). Hagyományos megközelítésben így hangzik a szabály: „húzzunk neveket a kalapból”. Másképpen: mindenki 1 ajándékot ad, mindenki 1 ajándékot kap és a sorsolás véletlenszerűen történik.

Készítsünk Java programot, ami megoldja a kölcsönös ajándékozást véletlenszerűen!

A neveket tároljuk el szövegfájlban ( nevsor10.txt). Soronként egy nevet. Ha különböznek, akkor elegendő a keresztnév. A soroknak/neveknek különbözniük kell. Ha szükséges, akkor hozzáírjuk a vezetéknevet, a vezetéknév első betűjét vagy sorszámot. Ezt a program beolvassa és megjegyzi egy szöveg típusú generikus nevsorLista nevű indexelhető adatszerkezetben. A nevek eredeti sorrendje nem befolyásolja a kiválasztást, mert a neveket a program összekeveri (helyben, véletlenszerűen, a shuffle() metódussal). Adott elemszámú lista indexelhető nullától elemszám-1-ig ( size()-1-ig).

A szövegfájl olvasása, tartalmának betöltése során – az ékezetes karakterek miatt – előfordulhatnak karakterkódolási problémák. Ekkor használható a readAllLines() függvény túlterhelt változata esetén a Charset típusú második paraméter, például így: Charset.forName("ISO-8859-2"). A fájlkezeléshez kötelezően kivételkezelés is szükséges (ezt most nem részletezem).

1. megoldás

Az ajándékot adó-kapó párosokat a listában egymás mellett lévő i-edik (bal) és i+1-edik (jobb) nevek adják. Az adó az elsőtől az utolsó előttiig, a kapó a másodiktól az utolsóig léptethető. Kimarad az a pár, amikor az utolsó ad és az első kap. A lista indexei szerint az adók esetében a nulladik elemétől az utolsó előtti eleméig és a kapók esetében a lista első elemétől az utolsó eleméig jelenti a kiválasztást. Mindez könnyen megoldható for számláló ciklussal. A kimaradó pár ajándékot adó tagja a lista size()-1-edik eleme és kapó tagja a lista nulladik eleme. Ez a ciklus után egyszerű kiírással megoldható.

2. megoldás

A program átmenetileg megváltoztatja a listát: az utolsó elem után bővül az első elemmel ( nevsorLista.add(nevsorLista.get(0))). Ennek köszönhetően az ajándékot adó-kapó párosokat a listában egymás mellett lévő lévő i-edik (bal) és i+1-edik nevek adják. Most nem lesz kimaradó pár, mert a korábbi utolsó elem most az utolsó előtti elem és az utolsó elem most az első. Másképpen: mindenki ad és mindenki kap.

A megoldás Stream API-t használ. Először előállít egy olyan IntStream típusú folyamot, amiben az ajándékot adó és kapó párosok adó (bal) tagjainak sorszámát/indexét tartalmazza. Ezután ezt végigjárva összefűzi a szövegeket ( mapToObj()) úgy, hogy a páros kapó (jobb) tagja az adó tag rákövetkezője. Végül a program kiírja a összefűzött szövegeket ( forEach()) a konzolra. Ha a neveket tartalmazó listát használnánk később még valamire (azaz kellene az eredeti összekevert állapota), akkor érdemes aktiválni a megjegyzésbe tett utolsó utasítást.

Eredmény

A program konzolos/szöveges eredménye mindkét esetben azonos. Persze a nevek sorrendje különbözhet, hiszen az összekeverés minden futtatás esetén másképpen alakul(hat), mert véletlenszerű. Például:

Érdemes tesztelni és átgondolni, hogy mi történne, ha üres a fájl, üres a generikus lista, 1 név van, 2 név van, illetve nem szabadna ilyet, de mi történne azonos nevek esetén. Vajon különbözik/különbözne a fenti két megoldás eredménye? Miért?

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A feladat a Java SE szoftverfejlesztő tanfolyam szakmai moduljának 17-28. óra Objektumorientált programozás és 37-44. óra: Fájlkezelés alkalmaihoz kötődik.

Kép élesítése effektus működése

Ismert számos képfeldolgozó, képjavító effektus. Az egyszerűbb effektusok elérhetők ingyenes web- és mobil alkalmazásokban, PowerPointban. Az összetettebb (művészi) effektusokhoz, szűrőkhöz már érdemes professzionális eszközt használni, ilyen például az Adobe Photoshop. Ezek a belépő szint képeffektusai kulcsszavakban: élesítés (sharpen), homályosítás (blur), elmosódás (gaussian blur), folyadékszerű rajz (liquid), olajfestmény (oil painting), öregítés (sepia), szürkeskála (grayscale).

Lássuk, hogyan valósítható meg Java programozási nyelven a kép élesítése!

A kép adatszerkezete

Adott egy képfájl. Formátuma a tipikus, feldolgozhatók (JPG, GIF, PNG, WebP) egyike. Ezek rasztergrafikus képformátumok. Lekérdezhető a dimenziója: ez képpontban (pixelben) jelenti a kép szélességét (width) és a kép magasságát (height). A vászontechnika meghatározza a kép origóját (0, 0) és a képpontok kétdimenziós koordinátapárját. A kép origója a bal felső sarokban van. A kép oszlopai (column) jobbra haladva növekvő módon, a kép sorai (row) lefelé haladva növekvő módon számozottak. Egy pixel koordinátapárja (c, r) alakban írható le. Minden pixel három szín kombinációjaként áll elő (r, g, b). Másképpen: a piros, zöld és kék összetevők aránya alapján meghatározott. A tipikus színmélység alapján a színek külön-külön 256-félék lehetnek, és ezeket 0-tól 255-ig egész szám képviseli. A 0 az adott szín hiányát, a 255 a szín teljes intenzitását jelenti.

A kép élesítéséhez használható szűrőmátrixok

A kép élesítése során szűrőt alkalmazunk a kép belső pixeleire. A kép 4 szélén lévő pixeleket nem változtatjuk. Többféle szűrő közül választhatunk, íme két példa:

A három színösszetevőre külön-külön kell alkalmazni a szűrőt. Az aktuális pixel – amire alkalmazzuk a szűrőt – a 3×3-as mátrix középső eleméhez igazítva szorzóértékeket tartalmaz. A konkrét eset: az a mátrix esetén az 5 érték a 2. sor 2. oszlopában helyezkedik el; ennek a közvetlen szomszédos pixeleire a -1 értékek, átlós szomszédaira pedig a 0 értékek vonatkoznak. Eredményül a szűrt pixel színeit kapjuk meg külön-külön. Ha a kapott értékek kisebbek 0-nál, akkor nullázzuk őket. Ha a kapott értékek nagyobbak 255-nél, akkor beállítjuk azokat 255-re. Az a szűrőmátrix kevésbé élesít, a b szűrőmátrix erősebben élesít.

Természetesen sok más képélességhez köthető szűrő is van még. Olyanok is vannak, ahol nem csak a közvetlen szomszédos pixeleket veszi figyelembe az algoritmus. További kulcsszavak a témához kötődően: digitális képfeldolgozás, lokális operátor, korreláció, konvolúció, átlagszűrő, mediánszűrő, zajszűrő, Laplace-szűrő.

A kép élesítését megvalósító Java forráskód-részlet

A fenti a mátrixot a SHARP_FILTER konstans kétdimenziós tömb tárolja. A paraméterként átvett BufferedImage típusú img1 objektum kép pixeleinek végigjárását ütközőként segíti a w szélesség és h magasság. A data egydimenziós tömb sorfolytonosan tárolja a kép pixeleit. Az if elágazó utasítás igaz ága kezeli a kép 4 szélét (változatlanul hagyott másolt színek). Az if hamis ága a belső pixelekre alkalmazza a szűrőmátrixot. A red, green, blue változók tartalmazzák az aktuális pixel színeit, amelyekbe az eredeti pixelre alkalmazott szűrő által szorzott értékek kerülnek, „belekényszerítve” a 0-255 zárt intervallumba. Végül az eredményül visszaadott img2 kép pixelei kerülnek beállításra. Az alábbi sharpenEffect() függvény mindezt megoldja az alábbiak szerint:

A metódus meghívása a fájlkezelést is tartalmazó vezérlőmetódusban például így történhet:

Az eredeti és élesített képek összehasonlítása

A bal oldalon az eredeti kép, a jobb oldalon az a mátrixszal élesített kép látható:

A bal oldalon az eredeti kép, a jobb oldalon a b mátrixszal élesített kép látható:

A látvány alapján fontos kiemelni, hogy másképpen is lehet összehasonlítást végezni. Például: színtérkép, színmélység, színösszetevők aránya (hisztogram).

Ötletek továbbfejlesztésre

  • Konzolos program átvehetné parancssori paraméterként a szűrőmátrixot, vagy annak nevét, kódját, egyes értékeit.
  • Grafikus felületű programban vízszinten JScrollBar  GUI komponens(ek) segítségével paraméterezhető, kigörgethető lehetne a szűrőmátrix szélsőértéke(i).
  • A fenti effektek a kép összes pixelét érintik. GUI felületen megoldható az is, hogy ki tudjuk jelölni a kép egy-egy részét, amire alkalmazni szeretnénk az effektek. Ez a kijelölés többféle lehet, például téglalap alakú, szabálytalan, átlátszó, adott vagy adotthoz hasonló árnyalatú színű, vagy valaminek a körvonala.
  • Egy mappában lévő összes képre alkalmazható effekt, előnézettel, képfájlonként megerősítéssel, jóváhagyással, csoportos kijelöléssel, szűrővel.
  • Szürkeskála effekt megvalósítása és tesztelése az alábbi forráskód-részlettel:
  • Homályosítás effekt megvalósítás és tesztelése a 4 élszomszéd színeinek átlagolásával, így:

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java SE szoftverfejlesztő tanfolyamunkon, a szakmai modul Objektumorientált programozás témakörét követő 29-36. óra Grafikus felhasználói felület alkalmain már tudunk egyszerűbb GUI programot tervezni, kódolni, tesztelni, kiegészítve a 37-44. óra Fájlkezelés alkalmaihoz kötődő példaprogramokkal.