Ratkó István emlékest 2022

A Gábor Dénes Főiskolán működő Ratkó István matematika interdiszciplináris alkalmazásai Műhely 2022. március 25-én 10. alkalommal rendezte meg a Ratkó István emlékestet. Ezen már többször is részt vettem előadóként és a hallgatóság tagjaként is. 2014-ben Prímszámkereső algoritmusok hatékonysága címmel, 2015-ben A bűvös négyzet története és előállítása (oktatóprogram) címmel tartottam előadást. A jubileumi emlékesten pedig „Töltsünk ki az ötöslottón 100 szelvényt úgy, hogy valamelyik szelvénnyel biztosan legyen két találatunk!” – a feladat megoldásához vezető út címmel tartottam előadást.

A blog bejegyzésben röviden összefoglalom az előadást:

  • Személyes élmények Ratkó tanár úrhoz kötődően
  • Ötöslottó: diszkrét matematika, elemi kombinatorikai feladat, lehetséges különböző szelvények száma, öttalálatos valószínűsége, szemléltetés
  • Véletlenszámok előállítása: valódi és ál (pszeudo) véletlenszámok, hardveres és szoftveres megoldások áttekintése, LCG
  • Egyetlen véletlenszám előállítása Java nyelven: procedurális, OO, szálbiztos megoldások
  • Egyetlen lottószelvény előállítása Java nyelven: adatszerkezet nélkül, logikai tömb (demóprogram), számtömb, szöveg (McMillan egyenlőtlenség, optimális kód, Huffman kód, prefixmentes kódolás, Shannon-Fano kód, hibajelző és hibajavító kód, Hamming távolság, Reed-Solomon kód, algebra: véges testek megkonstruálása), generikus lista (érték), generikus lista (keverés), generikus lista (elfogyasztás), generikus halmaz, funkcionális programozás / algoritmusok és adatszerkezetek rövid elemzése, összehasonlítása, kompromisszumok
  • Találatok száma: matematika vs. programozási tételek, metszet tömbbel és generikus listával, Stream API-val, lambda kifejezéssel
  • Különböző lottószelvények előállítása: összes eset, brute force, mesterséges intelligencia, problématér|állapottér, kombinatorikai robbanás kontrollálása
    (szemléletváltás: az eddigi 1-90 intervallumból kiválasztott 5 különböző szám egy lottószelvényt jelentett, mostantól az 1-43949268 intervallumból kiválasztott különböző számok különböző lottószelvényeket jelentenek)

Eddig minden feldolgozható a középiskolás matematikai eszköztárral és kezdő Java objektumorientált programozás által biztosított mozgástérben. A továbbiakhoz szintet kell lépni.

A konkrét feladatspecifikáció:

„Töltsünk ki az ötöslottón 100 szelvényt úgy, hogy valamelyik szelvénnyel biztosan legyen két találatunk!” (Segítség: töltsünk ki 30 szelvényt úgy, hogy az 1-25 közötti számpárt lefedjék; 21 szelvényt úgy, hogy a 26-46 közötti összes számpárt lefedjék; 21 szelvényt úgy, hogy a 47-67 közötti összes számpárt lefedjék és 28 szelvényt úgy, hogy a 68-90 közötti összes számpárt lefedjék. Miért lesz így legalább két találatunk?)

A szintlépéshez hasznos ismerni két tankönyvet (Szilasi Zoltán: Bevezetés a véges geometriába, 2015; Reiman István: A geometria és határterületei, 2001) és egy tudományos cikket (Z. Füredi, G. J. Székely, Z. Zubor: On the Lottery Problem, 1995). További szükséges ismeretek (geometria, algebra, elemi matematika, kombinatorika): projektív geometria, véges projektív sík, Kirkman iskoláslány problémája, Fano-sík (mint algebrai és geometriai leképezés), Steiner-rendszer (ponthalmaz, amely elemszáma 6k+1 alakú prím), néhány konstruktív jellegű bizonyítás, skatulya-elv.

Az előadás a feladat megoldásához vezető útról szólt. Az eredmény előtti utolsó előtti lépés ezt jelenti (Java program konzolra kiírt szövege):

Végül ismertettem néhány lehetőséget az algoritmus vizsgálatára és az implementált Java forráskód tesztelésére.

Köszönöm Kupcsikné Fitus Ilona kolléganőnek, hogy a jubileumi Ratkó István emlékest szervezőjeként előadónak felkért. Örömmel csatlakoztam újra. A prezentációmat a résztvevőkkel megosztottam. Köszönöm az érdeklődő kollégáknak és hallgatóknak a részvételt és a pozitív visszajelzéseket. Az emlékestek programjai elérhetők. Ajánlom lottószelvény címkénket is, mert a téma igazi örökzöld.

Tankocka – Idővonal: Java verziók újdonságai

Tankocka, IdővonalFolytatjuk Tankockák blog bejegyzés sorozatunkat. A feladatban az idővonalon kell jelölni a Java verziók megjelenését/újdonságaikat! Mindezt segíti néhány fontos változás felsorolásra. Ez a témakör mindhárom tanfolyamunkhoz kötődik: Java SE szoftverfejlesztő tanfolyam, Java EE szoftverfejlesztő tanfolyam, Java adatbázis-kezelő tanfolyam.

Ha érdeklődünk egy programozási nyelv iránt, akkor a fejlesztésének mérföldköveivel tisztában kell lennünk. Ezek sokszor koncepcionális irányokat jelentenek. Gyakran bővül az osztálykönyvtár, a funkcionalitás. Ritkábban, de megjelenhetnek új kulcsszavak is. Esetleg ki is vezethetnek dolgokat, lásd obsolete, deprecated. Érdemes az ismert operációs rendszerek, webes és mobil platformok, egyéb programozási nyelvek fejlődésével párhuzamot vonni: generációk, verziók, korszakok, irányelvek, ajánlások, szabványok, elterjedtség, népszerűség. A Java nyelv verzióváltásaira a 9-es verzióig átlagosan 2-3 évente került sor, utána félévenként.

Programozás Java nyelven könyv – új, 2022-es kiadás

Megjelent a Programozás Java nyelven című könyv 2022-es kiadása.

Hosszú evolúciója van ennek a könyvnek. 2009-ben jelent meg az alapozó Programozási alapok és 2010-ben a haladó Programozási technológia című könyv. Ezek továbbfejlesztett, kibővített, egyesített változataként 2016-ban jelent meg a Programozás Java nyelven című könyv v1.0 változata. Elérkezett az ideje az újabb bővítésnek, kiegészítésnek, ez lett a v1.1 változat. A fejlesztő munka 2022. január-februárban valósult meg. A könyvnek továbbra is az egyik hívómondata: „500 oldal, 500 példa”. A példatár is jelentős frissítésen esett át.

A Java SE szoftverfejlesztő tanfolyamunk hallgatói megkapják a könyvet. Tananyagunk egyik alapja. A könyvet több iskolában, felsőoktatásban, szakképzésben, többféle OKJ tanfolyamon és újhullámos céges tanfolyamokon is használták/használják Magyarországon és a szomszédos országokban is.

A tankönyvből elsajátíthatók a strukturált és az objektumorientált programozás­hoz kapcsolódó alapismeretek. Az alkalmazott programozási nyelv a Java. Fejlesztői környezetként ingyenesen elérhető eszközöket használ: JDK/JRE, NetBeans.

A tankönyv 19 fejezetet tartalmaz.

Előszó
1. Bevezetés a programozásba
2. Út az integrált fejlesztőeszközig
3. Alapfogalmak
4. Kifejezések, értékadás
5. Szelekciók
6. Iterációk
7. Metódusok írása
8. Tömbök
9. Objektumorientált programozás
10. Java osztályok használata
11. Rendezés, keresés
12. Kivételkezelés
13. Kollekciók
14. Interfészek, belső osztályok
15. Öröklődés
16. Grafikus felhasználói felület felépítése
17. Eseményvezérelt programozás
18. Swing-komponensek
19. Fájlkezelés
Irodalomjegyzék

A fejezetek egymásra épülnek, hivatkoznak egymásra. Alapelv, hogy mindig csak éppen annyi elméleti ismeretet kell adni, ami egy-egy feladattípus, témakör megértéséhez elegendő és azonnal meg kell mutatni, hogyan kell az elméleti ismereteket alkalmazni a gyakorlatban. Így összekapcsolódnak az elmé­leti és gyakorlati ismeretek, ezután lehet rájuk építkezni.

A fejezetek felépítése egységes. Rövid, tömör elméleti ismereteket kö­vetően példának szánt feladatok következnek. A feladatok megfogalmazása vál­tozatos, mindig alkalmazkodik a már közben megszerzett, elvárható szint igé­nyeihez. A feladatok megoldása forráskódként, később osztálydiagramok formá­jában is szerepel. Ha szükséges, a program futtatása során előállított üzenetek, szövegek, képernyőképek is megjelennek. A megoldás elemzésekor részletes magyarázatok szerepelnek, amelyek során a kezdeti vissza-visszatérő utasításszintű magyarázatot fokozatosan felváltja a megoldás elvi alapjainak ismertetése.

A fejezetek végén gyakorló feladatok találhatók. Az elemzett és gyakorló felada­tok kölcsönösen egymásra épülnek, hivatkoznak egymásra. A biztos tudás érdekében minden gyakorló feladatot meg kell oldani!

A programozási tételek nagy hangsúlyt kaptak a tankönyvben. Az elemi prog­ramozási tételekhez kevés előismeret is elegendő, az összetett programozási téte­lekhez már több és biztos ismeret szükséges. Így a programozási tételek több fejezetben szétszórva találhatók meg.

Előfordul, hogy egy-egy feladat többször is előkerül, ilyenkor mindig alapvetően más elvű megoldás található hozzájuk. Ezeket érdemes összehasonlítani (sorszámok alapján könnyen megtalálhatók), hogy egyértelmű legyen, hogy milyen különb­ségek adódnak a különböző módszerek, megvalósított algoritmusok, adatszerke­zet miatt. Az összetettebb feladatokhoz készültek Demo programok is, amelyek lépésenként vezetnek a megértés felé.

A szerző ezúton is köszönetet mond minden kollé­gájának, minden hallgatójának, akik ötleteikkel, tanácsaikkal, javaslataikkal segítették munkáját, támogatták abban, hogy e tankönyv minél színvonalasabb legyen.

Ábécé sorrendben: Balogh Péter, Barta Milán, Berecz Antónia, Bódy Bence, Friedel Attila, Hollós Gábor, Kállai Miklós, Kiss Balázs, Lengyel Borisz István, Nagy Gábor, Nádai Gábor, Peck Tibor János, Ravasz Ildikó, Seres Iván, Szabó Ervin, Szakácsné Takács Brigitta, Szegedi Kristóf, Székely László, Vincze Bianka.

A Programozás Java nyelven című tankönyv megrendelhető a szerző, Kaczur Sándor honlapján.

Tankocka – Hozzárendeléses táblázat: Java kollekciók

Folytatjuk Tankockák blog bejegyzés sorozatunkat. A feladatban a Java kollekciók közül a halmaz adatszerkezeteket megvalósító osztályok tulajdonságait kell hozzárendelni a táblázatban. Ez a témakör mindhárom tanfolyamunkhoz kötődik: Java SE szoftverfejlesztő tanfolyam, Java EE szoftverfejlesztő tanfolyam, Java adatbázis-kezelő tanfolyam.

Érdemes ismerni a kollekció keretrendszer további osztályainak/interfészeinek tulajdonságait, viselkedésüket: tömb, lista, sor. (Esetleg egyebeket is: verem, prioritásos sor, többdimenziós adatszerkezetek, kulcs-érték pár alapú elérés, adatszerkezetek egymásba ágyazása). Hasznos tudni, hogy melyiket mikor érdemes vagy éppen nem érdemes használni. Melyik a gyorsabb? Milyen karbantartó műveleteik vannak? Lehetnek-e bennük egyedi elemek, ismétlődések? Mitől függ az elemek sorrendje? Van-e indexe? Hogyan járható be/végig? Biztosít-e iterátoron keresztül hozzáférést az elemekhez? Használható-e többszálú környezetben? Szálbiztos-e az adott kollekció?

Egy példányban futó Java program

egy

egyGyakran észrevesszük, hogy a programok futtatásakor vannak bizonyos korlátok. Például egyszerre általában csak egyetlen telepítőprogram futhat egy operációs rendszeren. Vagy amíg fut egy program korábbi verziójának eltávolítása, addig nem futhat a program új verziójának telepítője. Vagy egy nagyobb erőforrás igényű program (periféria meghajtó program, képernyő videó+hang rögzítő, hardveres gyorsítást használó játékprogram) egyszerre csak egy példányban indítható el. Előfordulhat kategóriánkénti korlát is, például a különböző víruskereső programok általában „nem tűrik meg” egymást, kizárólagosságot „követelnek”.

Lássunk példát arra, hogyan kell készíteni egy példányban futó Java programot!

Néhány dolgot át kell gondolni:

  • Amikor először indítjuk el a programot, akkor olyan egyedi dolgot kell beállítani, ami mindvégig úgy marad, amíg a program fut. Ezt megtehetjük a memóriában, de megfelelő jogosultsággal futtatva a programot akár beleírhatunk a Windows rendszerleíró adatbázisába (Registry) is. Előbbi módszer platformfüggetlen lenne – ahogyan egy Java programhoz illik –, és az utóbbi megoldás pedig operációs rendszertől függne.
  • Amikor többedszer (második, harmadik… példányban) indítjuk el a programot, akkor ezt az egyedi dolgot észlelni kell és meg kell akadályozni a program másodszori, harmadszori elindítását. Hasznos, ha ezekben az esetekben kapunk hibaüzenetet, például: „This application is already running”.
  • Amikor a programot szabályosan állítjuk le, akkor a korábban beállított egyedi dolgot semmissé kell tenni. Ez biztosítja, hogy a program egymás után – egymással nem párhuzamosan, egymástól függetlenül – elindítható lesz.

A megoldás két részből áll. Ez a Java forráskód első része:

A program indulásakor le kell futni a fenti forráskódnak. A static blokk a konstruktor előtt hajtódik végre (például a modell vagy a nézet rétegben). A java.net csomag kötetlen ServerSocket osztályú ss nevű objektumát kell inicializálni helyben ( InetAddress.getLocalHost()) egy nem dedikált porttal ( 65001). Ez elsőre mindig sikerült és az objektum „beül a memóriába” egy nem blokkoló elven működő háttérszálon. Ha (többedszerre) nem sikerül létrehozni az objektumot, akkor – kezelve a kötelezően kezelendő kivételeket – hasznos jelezni ezt logban, konzolon vagy felbukkanó párbeszédablakban és a programból ki kell lépni (másképpen: a duplikált futtatását meg kell akadályozni).

Ez a Java forráskód második része:

A programból való szabályos kilépéskor le kell futni a fenti forráskódnak. Ez ellenőrzést követően lezárja az ss objektumot és kilép a programból. Például a main() metódusban, ha elfogynak az utasítások egy konzolos alkalmazásban, vagy GUI-s programban nyomógombra kattintás actionPerformed() esemény, vagy (fő)ablak bezárásának kísérlete WindowClosing() esemény.

A programot érdemes körültekintően tesztelni. Ha elrontjuk a fenti felsorolásban vázolt logikai működés végrehajtásának sorrendjét, akkor fejlesztés vagy tesztelés közben akár a számítógépet is újra kell indítanunk.

A bejegyzéshez tartozó teljes forráskódot ILIAS e-learning tananyagban tesszük elérhetővé tanfolyamaink résztvevői számára.

A Java EE szoftverfejlesztő tanfolyamunkon, a szakmai modul 5-8. óra Szálkezelés, párhuzamosság alkalommal megismerjük a megoldás elméleti hátterét és a 17-24. óra Socket és RMI alapú kommunikáció alkalommal többféle megvalósítást is kódolunk, tesztelünk.